
UWS through OpenAPI

Joshua Fraustro
May 22nd, 2024

EXPANDING THE FRONTIERS OF SPACE ASTRONOMY

 1

What were the goals?

What would a UWS 1.1 OpenAPI specification look like?

Why UWS?
• A sufficiently complicated example of a web service pattern that is already very RESTful

in its design.

• No part of it requires describing / modeling data formats. (VOTables)

Demonstrate:

• Paths, operations, parameters, and protocol models could be adequately represented.

• Version changes, iterative and large updates, were easy to create and work against.

• We could take advantage of modern tooling that uses OpenAPI standards.

• Find anti-patterns and pain points along the way.

2

Describing UWS in 3 steps

As an exercise, create 3 versions of the spec, with their own goals:

3

“ As-Is ”

• Describe the current
UWS 1.1 standard as

closely as possible

• Only make changes
that are not otherwise

possible to avoid.

“ Refinement ”

• Small changes that
solve current anti-

patterns

• Non-breaking / as
easy for client
developers as

possible

“ What-If? ”

• A more RESTful-ish
version of UWS

• Remove
dependence on XML

encoding

Problems? What problems?

Some of the problems & HTTP/REST issues in UWS have been pointed out in
previous Interops.

Some are small and simple to fix, some are definitely breaking
• Case-insensitive query parameters

• 303 HTTP status codes for successful operations (creating Jobs)

• POST operations for updating Job parameters

• Difficult to describe nuances of the XML schema

• Empty response bodies for certain Job parameters

• Unclear which parameters can be updated with POSTS to their endpoint. 
 
See: P3T Sydney 2024 & DAL Bologna 2023

4

https://wiki.ivoa.net/internal/IVOA/InterOpMay2024P3T/dal-openapi-tech-overview.pdf
https://wiki.ivoa.net/internal/IVOA/InterOpMay2023DAL/mast-tapservice-fraustro.pdf

UWS OpenAPI v1.1 - “As-Is”

Version 1:
A mostly straight-forward description of UWS 1.1 into an OpenAPI specification.

Positives:

• Fairly simple to do, UWS is already very RESTful in its design

• Paths, operations easy to document — no conflict with OpenAPI specs

• Request & response models are passably described - XML can be tricky

Negatives:

• OpenAPI 3.0 has XML support, but the UWS schema is complex

• Case-insensitive query parameters are (basically) impossible

• Redocly linting immediately noticed HTTP status code problem

5

“As-Is” OpenAPI Document
• Examples here of:

• Path parameters and operations

• Response enumeration

• Request & response models

Github Link:

https://github.com/jwfraustro/PTTT/tree/uws-basic
6

https://github.com/jwfraustro/PTTT/tree/uws-basic

UWS OpenAPI v1.2 - “Refinement”

Version 2: Small changes to fix design issues without greatly changing the spec.

• Minimal to implement for services, clients.  
An example of how it’s easy to see changes in the OpenAPI document.

7

Change Example Breaking?

All query parameters shall be
lowercase or camelCase
(for multi-word params)

PHASE -> phase
OtherParam -> otherParam

No.
DALI allows arbitrary casing.

HTTP status codes for GET’s to
empty parameters should indicate

as such

GET /quote
204, No-Content  

or
200, null

Yes, but a simple change.

303 Redirects (for POST’s, etc.)
changed to their appropriate status

codes

POST /jobs
should return

200 OK
Yes, but a simple change.

“Refinement” OpenAPI Document

• New OpenAPI document on the left

• Git diffs between the two versions are easy to see

and understand.

Github Link:

https://github.com/jwfraustro/PTTT/tree/uws-improved

8

https://github.com/jwfraustro/PTTT/tree/uws-improved

UWS OpenAPI vX - “What-if?”

9

Version X: An exercise in creating a more modern UWS pattern with OpenAPI
Changes:

• All of the previous changes

• Request / response job messages are fully JSONSchema describable.

▸ Means we get more varied native encoding formats.

• Job creation by POST’ing the document — no HTTP/form-encoded

Is it breaking?

• Well, yes. 
 
Working on a prototype implementation at MAST w/ FastAPI client libraries.

“What-If” OpenAPI Document

• Removal of http/form-encoded.

• Simple to represent change, just point the

request body at the ‘Parameters’ object

Github Link:

 https://github.com/jwfraustro/PTTT/tree/UWS-MAST

10

What’s the point?

Documentation.

In the end, adopting OpenAPI specifications for our standards means:

• Explicit, technical and readable descriptions of our services.

• Easier on-boarding for developers. (client, service, contributors)

• Lower maintenance — both developing the standard and implementing it.

• All the modern tooling and industry support that comes with it.

11

Going Forward

• Take a look at the “As-Is” version of the OpenAPI spec.

▸ Can be ready for adoption in the near future.

▸ Needs review from more eyes (than mine!)

• Think about how we would integrate OpenAPI docs with our current
document publishing pipelines.

• Keep pushing forward with JSON-compatible implementation / libraries.

• Look at how proposed changes/tweaks affect client software.

Bonus: PetStore IVOA Spec

IVOA-style standards document for the classic PetStore API example:

Bonus: PetStore IVOA Spec

Can you diff it?

Bonus: PetStore IVOA Spec

Can you diff… the OpenAPI spec?

