UCD discussion from SSIG

B. Cecconi, S. Erard, P. Le Sidaner Observatoire de Paris

Previous proposal (1)

Plasma environment modeling

- magnetic potential vector.
 phys.magfield;phys.potential OR phys.magfield.potentialvector
- electric current density (total current density of all charged particles: electrons, protons, ions...)
 phys.flux;phys.atmol.ionstage is not satisfactory.

Illumination conditions

- Note: only pos.phaseAngle available.
- New identified needs
 - Incidence angle. Same as "solar zenithal angle"

pos.incidenceAng

- Emergence angle:
 - pos.emergenceAng
- Azimuth angle:

pos.azimuthAng

Previous proposal (2) Coordinates and ephemeris

Coordinates

planetary magnetospheric coordinates use colatitude and not latitude (spherical coordinates).
 pos.bodyrc.colat (or pos.az.zd?)

Orbital Parameter

- perifocal distance:

pos.distance;src.orbital.perifocal

Generic coordinate systems

- current coordinate systems in "pos." UCDs are: AZ, BodyRC, Cartesian, Earth, Ecliptic, EQ, Galactic. Adding generic cylindrical system would be useful:

```
pos.cylindrical.r / pos.cylindrical.th / pos.cylindrical.z
or pos.distance (pos.radius?) / pos.az.azi / pos.distance (pos.height?)
```

Vector or matrix components

- Adding a way to say "this a component of a vector or a matrix, and not the full set of information": **phys.component**

Rotation parameter description

- necessary for describing attitude and orientation parameters

```
pos.rotation.eulerAng
pos.rotation.quaternion
pos.rotation.matrix
pos.rotation.axis
```

More info here: https://voparis-confluence.obspm.fr/display/VES/VESPA+Contribution+to+NASA-JPL+WebGeoCalc+tool

Previous proposal (3) EPN TAP keywords

Spatial Resolution

- We need spatial resolution (spatial sampling: in situ or projected on target) and angular resolution

```
pos.resolution
pos.angResolution
```

Heliospheric coordinates

- There is a heliocentric related UCD, but it is a generic reference frame qualifier. Adding heliocentric longitude coordinates would be useful.

```
pos.heliocentric.lon
```

- while there, let's add also heliocentric latitude.

```
pos.heliocentric.lat
```

Metadata

New identified needs

```
- checksums: MD5 hash
  meta.cryptic;meta.file (?)
  meta.checksum;meta.file
```

- modification date
 time.processing;meta.file
 time.update;meta.file

```
to be compared with creation date
     time.creation; meta.file
     and release date
     time.release; meta.file
```

Updated proposal

Spectroscopic and photometric measurements

Note

In Spectrum DM, spectral dependencies are given in UCD. For instance:

- Flux Density per unit wave: phys.flux.density;em.wl
- Surface Brightness per unit frequency: phys.flux.density.sb;em.freq

Is this something that we want to keep for the future?

Tools are using UCDs to detect spectral quantities. This works now because it is simple. More complex description needed => tools broken?

New identified needs

Detailed description:

https://voparis-confluence.obspm.fr/display/VES/Spectral+quantities+in+use+for+Planetary+Science

Many spectral data related to observations of the Solar System are not calibrated / distributed in flux, but as different quantities adapted to resolved sources:

- radiance: power from the source, per unit area (intrinsic quantity)
- reflectance: generalization of "albedo", i.e., measured radiance relative to incoming power. Several variations exist depending on context.
- The radiance of a source can be derived from a measured flux but has to be calibrated (depends if the field of view is filled, and on observer-source distance), therefore no simple conversion can be performed on the fly.

Data.FluxAxis.Value / name	Data.FluxAxis.ucd	Data.FluxAxis.unit	Possible equivalent UCD
Radiance (=I)	phot.radiance (exists in UCD 1.3, but see below)	W * m**(-2) * sr**(-1) * mu**(-1) (and variations)	phys.luminosity;phys.angArea;em.wl (heavy)
"Reflectance" = Radiance factor (RADF) = πr = "I/F ratio" (I/F may include thermally emitted light)	phys.reflectance? (would not cover emitted light) phys.l_over_F? (would be more general)	dimensionless	phys.albedo;em.wl (but ambiguous, and only when emission is negligible). Equal to "normal albedo" at i=e=0° (and phase = 0°) only arith.ratio;phot.flux.density - not even sure because this is the ratio of a radiance to a flux (in sr^-1)
Derived quantities			
Bidirectional reflectance = r = I/πF	phys.bidir?	sr**(-1)	
bidirectional reflectance distribution function (BRDF) = r / μ0	phys.brdf?	sr**(-1)	(mostly used in terrestrial remote sensing)
Reflectance factor (REFF) = Radiance coefficient πr/μ0	phys.reff?	dimensionless	(used with laboratory samples)
Normalized reflectance	arith.ratio;phys.reflectance ? does not seem adapted M4ast currently uses phys.reflectance;em.wl;arith.ratio	dimensionless	Normalized to 1 at some wavelength
+ thermal / emission quantities	Same as I/F for spectral measurements		I/F also apply to observations in the thermal range. What about lab measurements?
+ Hemispherical quantities			TBC

Table 1: Quantities in use (µ0 stands for cosine of incidence angle; acronyms in parenthesis are from Hapke 1981 and are commonly used)

New proposals

- Spectral Matrix (or Jones Matrix): matrix of auto- and cross-correlations between colocated antenna with different polarizations (similar to "auto"-visibilities = visibility with null base-line) Could be either:
 - a child of phys.polarization, as it is a raw measure of the polarization
 - a child of instr as is tells what type of instrument/mode set up is used.
 - This UCD would be used to advertise clients that a data product contains this specific type of data (used in obscore:o_ucd or epn_core:measurement_type) in order to select the tools to send the product to.
- UCD for gravitational field "Power Spectrum of Spherical Harmonic Coefficients of Lunar Gravity Model":
 - phys.gravitation
- Shape model (full 3D shape) or Terrain Model (or Elevation model) with respect to reference geoid or ellipsoid:
 - phys.shape
 - phys.shape.elevation
- **Spatial Resolution**: The **pos.resolution** UCD has been deprecated at some point and replaced by **pos.AngResolution**. We need it back for, e.g., cartesian axes.

Status and update of UCD

- What is the status of the UCD update discussed last year?
- What is the result of the tests done with provided examples?
- We tried a system based on RT (Request Tracker) for managing new UCD proposals, but it did not work. Other options?