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Abstract

The purpose of this document is to describe possible probabilistic scoring
methods for database query results. The IVOA Simple Spectrum Access Protocol
[SSA IF] introduces the concept of a scoring mechanism to rank matching
records by relevance. The intention is to provide guidelines for design and
implementation without tying it closely to a specific VO protocol.

Status of This Document

This is an IVOA Note expressing suggestions from and opinions of the authors. It
is intended to share best practices, possible approaches, or other perspectives
on interoperability with the Virtual Observatory. It should not be referenced or
otherwise interpreted as a standard specification.
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1 Introduction

How to pick the most interesting candidates from a wealth of records satisfying a
query?

This documents provides some hints on how to help human users in making the
right choice at the first attempt. Obviously there is no right or wrong in preferring
one data set over the other. What a machine can do though is offering a
statistical probability based on a priori knowledge and based on the analysis of
the query parameters.

In the context of result sets returned by VO standard protocols such as [ADQL] or
SSA there is quite a bit of known structure to it as compared to a classic Google
type search scenario. Adopting an index algorithm that treats a [VOTable] like a
free text document would defeat the purpose of using XML in first place. The
attribute vectors (records) to be ranked have mostly got assigned data types,



units, (error) bounds, semantic concepts [UCD] and even string values are
mostly part of some controlled vocabulary. Therefore, one can narrow down the
problem definition as follows...

2 Problem Definition

Let’s consider the simplest problem instance whereby an inventory of real or
virtual data products is stored in a database table D. D has got n tuples {t;,...,tn}
over a set of attributes A = {A4,...,An). A query Q is defined as an expression of
constraints

Q := X7 Op; x; AND ... AND Xs Ops Xs

where X;is an attribute from A and x; is its value. Op; denotes a query operator
such as =, >=, boolean NOT etc.

For the design of a probabilistic algorithm it is important to distinguish the set of
of known attributes X = {X3,...,Xs} < A from the set of unspecified attributes
Y=A-X

S denotes the answer set S ¢ {ty,..., t;} of Q. The problem to solve occurs when
the query is resulting in a large S. Large means that a human user requires
assistance in efficiently choosing a subset that is sufficient to satisfy the specific
purpose of the individual archival research. This is of particular interest in usage
scenarios where only a single item (best match) or a very limited number of items
is desirable and the query is imprecise.

For the sake of simplicity above problem instance neglects the possibility of
nested boolean expressions and missing values. This document does not
attempt a detailed analytical discussion but proposes some pragmatic approach
to satisfy the following requirements ...

3 Requirements

Below a summary of requirements that the authors deem necessary for an
implementation of a probabilistic scoring heuristic that can be applied to typical
SSA, ADQL, etc. usage scenarios.

R1 Returning score as a number:

The relevance, i.e., score of each record in result set S shall be expressed as a
single, positive floating point number. The higher the probability that a record is
relevant to a query Q, the higher its value.

R2 Context sensitivity:



The algorithm must be capable to take at least two independent contributing
components into account:

Firstly, the relevance of t must depend on Q. In other words, no t € D is a priori
more relevant than any other one. The algorithm has to provide a measure on
how closely tuple t; is matching the set of constraints X.

Note:
This implies that the score of a tuple t;is computed at the time of the query
because in the general case it is not feasible to pre-compute and store all
possible scores for all possible queries in advance. This does not prevent
the computation of statistics in advance to increase efficiency.

Note:
A feedback loop, for instance, may change the score dynamically.
Therefore, the relevance of tfor a given Q may change over time.

Secondly, the importance of an attribute with respect to the others in A. The
relevance of an attribute shall be defined independent of Q. As a bare minimum it
is required to weight user provided constraints X differently from unspecified
attributes (defaults) denoted as set Y.

R3 Generality:
The algorithm must be generic, so that optional and service specific constraints
can be supported.

In particular, it must not restrict its applicability to a handful of commonly used
parameters like celestial position as this would add little or no value to existing
search interfaces which often provide positional plotting capabilities or even a
method to cross match.

R4 Keep quality out of the game:

The score must be kept separate from any quality measure of a datum. Even
data of perfect objective quality may score zero when they are irrelevant to a
particular search. Conversely, the seemingly worst dataset may score highest if
the goal of the query is to look for the worst.

R5 VO Compliance:

Implementations shall be compliant with current IVOA standards where
applicable. For instance, it must be possible to integrate the ranking as part of
the common VO protocols such as VOTable result sets with a defined utype
attribute.




4 Measuring the Quality of a Match

When breaking down the problem into patterns for certain classes of attributes
then one can devise a method for each attribute class that is tailored to measure
one aspect of the quality of a match.

An example:

The fact that a higher spectral resolution should be considered better if two
observations are otherwise similar is obvious to the domain expert. It is, however,
not obvious how to express better in the context of a specific encoding in a
database. If the spectral resolution is given in nm then the smaller the number,
the higher the resolution. If, however the resolution is given as an absolute
number like, say R=500 then a bigger number like R=600 is better in the general
case.

Such considerations lead to a number of basic methods that apply to a large
fraction of potential attributes in Astronomy data collections. For instance, the
numeric difference is a reasonable first order in indicator for many measured
quantities:

numeric distance(x;) := norm(abs(X; - x;))

abs() returns the absolute value. More interesting is the normalization function
norm(). It is up to the ranking algorithm to define it. One possible definition is to
normalize against the dynamic range of attribute X;in database D:

0 forabs(Xi— xi) > range
norm(xi) = 1 forXi—xi=0

forabs(Xi— xi) < range
1

range
abs(Xi — xi)

1—

Example:  Xij=5 x=4.5, dynamic range = (3,8) = 5
norm(abs(5 - 4.5)) = 0.9

A completely different method is required to deal with enumerated values
(controlled vocabularies). The following method choice() defines a way to judge
the applicability of several data formats that are available for a given data
product:



0.1 forimage/ jpeg

) i 0.2 forimagel png
choice(xi) = o ]

0.8 forapplication/ fits

1.0 forapplication/ x — votable + xml

Other common patterns are matching substrings. A normalization of the length
substring against the length of the given text may yield a measure for the quality
of a match.

Again, there is no limit to possible methods. It is important to the domain expert
to have a set of methods that is applicable to A.

5 Design Considerations

This chapter outlines a number of ideas and design considerations for the
implementation.

In the context of an SSA service one can view the scoring method as an optional
sub-service that can be switched on and off.
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Figure 1: Service architecture.

A ranking mechanism may gather input from a number of sources (Figure 2).
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Figure 2: 1/0 of a scoring heuristic.



Most importantly there is the actual set of query parameters. Then there is the
VOTable that carries S or some subset of attributes thereof. Its score column
gets populated by the ranking system (Figure 3).

<FIELD name="score" datatype="float"
ucd="meta.code.number;stat.likelihood" uytpe="ssa:Query.Score"/>

Figure 3: Score column definition in a VOTable V1.1 with UCD 1+.

There is also a priori knowledge which should be exploited as much as possible
because a human user tends to provide only the minimum of information on top
of application defaults. A priori knowledge may have various origins such as:

- domain expert (archive scientist)
- pre-computed statistics on the data collection
- worklog captured from previous user sessions (feedback loop)

In order to capture knowledge of a domain expert who can accurately
characterize a data collection there should be a configuration mechanism. The
domain expert may, for instance, apply global weights to each attribute in A and
specify a method that is suited to measure the quality of a query match.

Modularize the algorithm so that the total score is a sum over contributing
attributes or related groups of attributes (Figure 4).
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Figure 4: Matching a given tuple with the query constraints. The score is
indirectly proportional to the integrated area of the boxes: Each attribute
has got a weight (width) whereby wider means more important. User
specified parameters X are generally more relevant than ‘guessed’ or
unspecified query parameters Y which may be ignored completely in a
simple implementation. The smaller the distance from a perfect match
(height), the better.

Note:




Normalizing the total score is not recommended as this would create the
impression to the end user that the score is absolute and could be used to
compare the score of different services; in reality the score is strictly
relative to a single query from a single service. A client application may
always choose to normalize later on. Normalization is a global operation on
S and prohibits the streaming of results.

As discussed in section 4 the general problem can be broken down into patterns
for certain classes of DB attributes.

Scores or partial scores may be cached for efficiency. In general it is important
for the design to distinguish between steps that can be pre-computed such as
weight maps, statistics based on previous queries and steps that can be taken at
the time of the actual query only.

A possible strategy is to bin attribute value ranges and to assign weight factors to
each bin of each attribute. For a query instance Q it is then a matter of looking up
the weights for the given bin of X; and to put it into the scoring formula.
Interpolating weight factors of the two neighboring bins will yield higher precision.

Y (set of unspecified or default params) is usually way larger than X (user
specified). By keeping track of what users searched for and which data actually
were retrieved (e.g. SSA has a distinct query and retrieval mode) one can identify
successful searches from pointless ones and thereby infer y from the actual
values of selected (purchased) tuples.

Consider running the scoring algorithm as a service detached from the data:
Given that the DB structure is known, for instance, after exploring it via a
[SkyNode] interface, plus a given attribute characteristics document which needs
to be generated only once by a domain expert it becomes possible to compute
scores also for queries against remote SkyNodes.

Some thought needs to be given on how to capture and channel back workload
information to the scoring system. This is about how to learn from previous
queries and user selections over time. It boils down to the question: “How likely is
it that a user who requests value x of attribute X also is interested in value y of
attribute Y?*“ Example from E-shop: People who bought this item also purchased
those items. This area is subject to future investigations.

Computing scores for a huge result set is potentially very costly: Hence, it is
desirable to refine Q before its execution such that it only returns a reduced set
S. Some recent papers about Top-k scoring and automated query tuning are
[RankSQL] and [Selftune].

A further optimization is to define several configuration for specific scenarios. A
domain expert would define a set of weight maps and specify different ranking




methods depending on the context. This raises the question of how to trigger or
select a configuration. Introducing a ranking-specific query parameter would
make the ranking system more intrusive on the user side.

Finally, the design should allow for shortcuts when Q yields a trivial result like for

instance no matching records, or everything matches or there is one perfect
match.
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