
IVOA Provenance DM in TAP :
Issues and solutions

F.Bonnarel, CDS
on behalf of M.Servillat, M.Louys, M.Nullmeier, M.Sanguillon,
L.Michel

Why Provenance in TAP ?

● Provenance information can be attached to data in
various ways :
– Embedded in the data « header » itself

– Linked to the data record via DataLink or URL

– Retrievable via ProvSAP via data id.

● In addition to that , Provenance metadata in a TAP
service will allow to discover « data » by constraining
Provenance features.
– It's a « reverse » mechanism.

« The » issue = complexity

 « The » issue
 = complexity

1 table per class ?
---→ ProvTAP

ProvTAP status

● There is an internal draft

on the IVOA DAL page

● TAP schema mapping classes

 as tables

● ProvHiPS (provenance of

 HiPS and HiPS tiles) is

an implementation prototype

● From now examples and demos

from ProvHiPS

ProvTAP TAP_SCHEMA:
Entity table

ProvTAP TAP_SCHEMA:
parameterDescription table

ProvTAP TAP_SCHEMA:
parameter table

ProvHiPS ADQL query examples :
Finding out drizzled images « progenitors » of a specific HiPS tile.

 j8e614010_drc

Drizzled image

HipsTile: Npix9199544

WasGeneratedBy

Activity : Hipsgen production of tile
Npix9199544

used usedusedusedused

j8mt37011_drc
Drizzled image

j8mt37021_drc
Drizzled image

query

ProvHiPS ADQL query examples :
Finding out drizzled images « progenitors » of a specific HiPS tile.

select e.e_name, e.e_comment, a_name, a_starttime, a_comment, ee.e_name,
ee.e_comment from entity e

join wasgeneratedby on e.e_id = wgb_entity

join activity on wgb_activity = a_id

join used on a_id = u_activity

join entity ee on ee.e_id = u_entity

where e.e_name like '%Npix9199544'

ProvHiPS ADQL query examples :
Finding out drizzled images « progenitors » of a specific HiPS tile.

Issues

● Table is denormalized : a lot of redundant
information

● Loop issue : several occurances of the same
triplet (name,utype,ucd) in the same table
for different « objects »

● Let’s try minimum or last step provenance by
creating a standardized view

Solutions
-1 Single step = single table (= join)

● The join is a permanent view described in the TAP schema
● Columns :

entity_name, entity_location, entity_comment, ...

generating_activity_name, generating_activity_starttime, ….

agent_role, agent_name, ….

used_entity_list

● → Redundancy may be avoided if we group all used
entities ids in a single cell

● → possible Recursivity

Solutions
Single step = single table (= join)

● View (in postgres)

 create view last_step_provenance as select

e.e_id AS entity_id, e.e_name AS entity_name, e.e_location AS entity_location, e.e_generated AS entity_generated,
 e.e_invalidated AS entity_invalidated, e.e_comment AS entity_comment,

 activity.a_name AS generating_activity_name, activity.a_starttime AS generating_activity_starttime,
activity.a_endtime AS generating_activity_endtime, activity.a_comment AS generating_activity_comment,

 wasattributedto.wat_role AS agent_role, agent.ag_name AS agent_name, agent.ag_type AS agent_type,
 agent.ag_affiliation AS agent_affiliation, agent.ag_email AS agent_email, agent.ag_address AS agent_address,
 agent.ag_phone AS agent_phone, agent.ag_comment AS agent_comment,

string_agg(used.u_entity::text, ','::text) AS used_entities_list
FROM entity e

 JOIN wasgeneratedby ON e.e_id::text = wasgeneratedby.wgb_entity::text
 JOIN activity ON wasgeneratedby.wgb_activity::text = activity.a_id::text
join used on u_activity = a_id
join entity as ee on ee.e_id = u_entity
join wasattributedto on wat_entity = e.e_id
join agent on ag_id = wat_agent ;

Solutions
Single step = view query execution

Success and limitations

● Clear column names for distinct objects
● No more redundancy
● But :

● Complex recursivity to manage
● No direct retrieval for chains of provenance

Going Further

● TAP annotation of the simple table query

(see Mireille’s talk)
● Renormalized response (multitable)
● Instance query

(see DaveMorris/Laurent Michel talk)

→ no simulation here

ProvTAP annotation

Denormalized solution

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19

