
 International

    Virtual

    Observatory

Alliance 

Lessons Learned Implementing UWS
Version 0.1
IVOA Note, May 2008

This version:
0.1

Latest version:
not issued outside GWS-WG

Author(s):
Paul Harrison

Abstract
The Universal Worker Service pattern (UWS) [1] defines how to manage 
asynchronous execution of jobs on a service. The experience of implementing the 
REST[2]  version of the pattern on the CEA[3] server component is documented 
here. The pattern is found to be easily applicable, and deemed suitable for 
adoption in other IVOA standard protocols. Areas where further clarification of the 
UWS pattern is necessary are identified as well as suggestions for additions and 
enhancements.



Status of This Document
This is an internal working draft of the GWS-WG. The first release of this document 
was on 2008-05-05 within the working group; it has not yet been issued outside the 
working group.

This is an IVOA Working Draft for review by IVOA members and other interested 
parties. It is a draft document and may be updated, replaced, or made obsolete by 
other documents at any time. It is inappropriate to use IVOA Working Drafts as 
reference materials or to cite them as other than “work in progress”.

A list of  current IVOA Recommendations and other technical documents can be 
found at http://www.ivoa.net/Documents/. 

Contents
1 Introduction                                                                                                            ..................................................................................... ...................  3  

1.1 Relationship between CEA and UWS                                                              ..........................................................  3  
2 UWS REST Interface for CEA                                                                               ...........................................................................  3  

2.1 Implementation Details                                                                                     .............................................................................. ...  3  
2.2 Job Control Language                                                                                      ................................................................... ...............  4  

3 Proposed Changes to UWS 0.3.                                                                            ...................................................................... ..  4  
3.1 The Quote and Job control.                                                                              ..................................................................... .....  4  
3.2 Extra Job State                                                                                                 .............................................................................................  5  
3.3 Termination Time and Job Destruction                                                             ...................................... ...................  5  
3.4 Error Object                                                                                                      ...................................................................................... ............  6  
3.5 Job Deletion                                                                                                     ........................................................... ......................................  6  
3.6 UWS Interface type                                                                                          ......................................................... .............................  6  

4 Composite Objects Schema                                                                                  ..............................................................................  6  
4.1 Job Metadata                                                                                                   ........................................... ....................................................  7  
4.2 Results Metadata                                                                                             ................................................ .........................................  7  

5 Good REST style                                                                                                   .................................................................... ...........................  7  
5.1 Returning xml or html versions of objects                                                        ....................................................  7  
5.2 Identifying links.                                                                                                ............................................................................................  8  
5.3 Redirects and Reloads                                                                                     ................................................................. ................  8  

5.3.1 Redirect after a POST                                                                                            ........................................................................................  8  

5.3.2 Reload later                                                                                                            ........................................................................................................  8  

6 Evolution of current DAL protocols                                                                        ....................................................................  8  
6.1 Miscellaneous issues                                                                                       ..................................................................................  9  

6.1.1 AutoRun                                                                                                                  ..............................................................................................................  9  

http://www.ivoa.net/Documents/
http://www.ivoa.net/Documents/
http://www.ivoa.net/Documents/


6.1.2 “Pseudo-Synchronous” Execution                                                                          ......................................................................  9  

7 Conclusions                                                                                                           ...................................................................... .................................  9  

1 Introduction
The Universal Worker Service (UWS)[1] pattern defines how to build 
asynchronous, stateful, job-oriented services. It does so in a way that allows for 
wide-scale reuse of software and support from software toolkits. The pattern is a 
result of continuing research by the IVOA Grid and Web Services Working 
Group[9] to find such a pattern that can used by the DAL v2 services which need 
the asynchrony for scalability.
This document describes the experience of applying this pattern to the existing 
CEA[2] server implementation that Astrogrid have written.

1.1 Relationship between CEA and UWS
The semantics of the UWS pattern are a good match to the semantics of CEA 
(which is not surprising since the UWS pattern was inspired by CEA), and 
consequently adapting existing CEA services to implement the UWS pattern is a 
natural fit. It is relatively easy to use the same core code to manage the objects 
and state associated with both of the interface patterns simultaneously. 
As is stated in the UWS 0.3[1] document the CEA services represent a class of 
services that might be classed as “Parameterised Applications”. This essentially 
can encompass the class of services that are not explicitly defined by the standard 
DAL services (SIAP[4], SSAP[5], TAP[6]). However, if the DAL v2 services adopt 
the UWS pattern then the CEA server can also be seen as a  “DAL toolkit” that can 
also be used to implement these standard services as they can be configured 
using the same mechanisms as the “parameterized applications”. Additionally, the 
CEA container has the advantage that it is already compliant with other ancillary 
IVOA standards such as VOSI[7] and the various security related standards[8].

2 UWS REST Interface for CEA

2.1 Implementation Details
As has been stated above, the UWS pattern has its roots in the original CEA 
pattern, so the existing CEA software already has components that deal with the 
same concerns as UWS (such as asynchrony) making it relatively easy to “bolt on” 
the UWS interface to the existing software.
It should be noted that the CEA server implementation retains its existing 
“Common Execution Connector” SOAP web service interface, rather than 
implementing a SOAP version of the UWS interface. This was done because there 
are already a reasonably large set of clients that understand this old SOAP 
interface, and little apparent interest from clients to implement new SOAP 
interfaces.



2.2 Job Control Language

The principal feature that distinguishes different services using the UWS pattern is 
the Job Control Language (JCL) – i.e. the instructions that are used to create a 
new job as explained in section 1.4 of [1]. In the case of a CEA service this is a so-
called “Tool” XML document, which (in its simplest form) has a structure as 
indicated in Illustration 1. The interaction of this tool document with the CEA server, 
as well as the method of discovering more metadata about the parameters from 
the CEAApplication are discussed elsewhere[10,11]
The details of this JCL are not important for the current discussion apart from 
noting that there is not a simple “key=value” structure to the parameters so the 
document needs to be POSTed in its entirety as the body of the request to the 
/(jobs) endpoint, rather than being able to be directly driven from a HTML form and 
submitted with an encoding of “application/x-www-form-urlencoded”. Although 
standard HTML form controls cannot be used to create a CEA JCL document, 
XForms[12] technology is perfectly suited to creating and manipulating such 
documents, and the  CEA server implementation does contain a prototype XForms 
based page to allow local testing of the configured applications.

3 Proposed Changes to UWS 0.3.
The following sections list some suggestions for changes and clarifications of the 
UWS pattern as defined in [1]. These changes are prompted by the experience 
gained in implementing the pattern both from the server and client side.

3.1 The Quote and Job control.
In the UWS document the Quote object is used to predict when a job is likely to 
complete, and is used to start the job by the client indicating that it “accepts” the 
quote by POSTing to the Quote object. This use of the quote object is a little 
idiosyncratic as often the service will be unable to give an accurate prediction and 
is even allowed to indicate a “do not know” response.
An alternate (and possibly more natural) method that can be used to affect the job 
control is via sending messages to the Phase object. The Phase object does of 
course indicate the current state of the job and so POSTing new values to this 

Illustration 1: The CEA Job Control Language



object could be seen as a natural “RESTful” way of affecting the overall execution 
state of the job. In the CEA implementation of UWS the following were 
implemented;

1. POST phase=run is used to indicate that the job should be moved from the 
PENDING phase to the QUEUED phase.

2. POST phase=abort is used to indicate that a job should be aborted.
In this way it is a permissible for a client to initiate a job into a running state with 

1. a POST of  the JDL to the main /(jobs) URL
2. a POST of phase=run to the /(jobs)/(jobid)/phase end point

i.e. there is no need to interact with the Quote nor Termination time objects if the 
client is prepared to accept whatever defaults are used for these.

3.2 Extra Job State
In addition to the states that are in UWS[1] section 2.1.3 there is an additional state 
of “ABORTED” which would be useful. The job would be in this state when either;

● The job was aborted by the client.
● The job was aborted because it has exceeded the Termination time.

Note that this state is necessary in the case where Termination time does not 
equal Destruction time.

3.3 Termination Time and Job Destruction
In UWS[1] the termination time actually fulfills two roles.

● The time when the job should stop executing
● The time when all records of the job should be destroyed.

In the CEA implementation there is a distinction made between these two states in 
that the termination time is taken to mean only the time that the job should finish 
executing. An additional concept of “Destruction Time” is introduced to indicate the 
time at which the server will delete all record of the job having executed. This is 
done for two reasons.

1. If a job does exceed its termination time, then it is possible that some useful 
results (although presumably not the complete set of final results) could 
have been produced.  In this case, having the destruction time later than the 
termination time allows the client possibly to pick up the results that are 
available, which might indicate to the client how to alter the job parameters 
in such a way to allow successful completion within a given termination 
time.

2. Even when a job completes successfully within its termination time then it is 
potentially useful to a client to be able to effectively store the intermediate 
results at the UWS server for a length of time that is longer than the original 
termination time. Indeed the UWS server might be prepared to offer storage 
for a longer time that it is prepared to offer CPU resources. Using the UWS 
server as temporary storage of results in this fashion is an effective way of 
managing the flow of data during a workflow without the need for a 



VOSpace server, and can potentially reduce network traffic if the 
intermediate results of the workflow are not required at the end of the 
workflow.

To access and possibly modify the destruction time of the job a new URI was 
added to the CEA implementation
/(jobs)/(jobid)/destruction

A GET of this URI returns the ISO8601 format time when the server will delete 
the record of this job.  POSTing a application/x-wwww-form-urlencoded and 
contains the parameter named TIME whose value is the new destruction 
time in ISO8601 format attempts to change the value of the destruction time. 
The client should not assume that its request will always be granted, 
however, and should always GET the URI again to see what the server has 
accepted. It is expected that a UWS implementation will have a  policy for 
how long it will keep job metadata and in most cases will not allow 
unbounded extension of this time

3.4 Error Object
The UWS pattern presented in [1] does not have a explicit way in which to report 
error messages from the underlying application that is being executed by the job. 
In order to provide some uniformity for clients once they have detected an error 
status from the phase object, the CEA implementation exposes an error object at 
/(jobs)/(jobid)/error that contains a message containing more detail about the 
errors that caused the job to fail. The intention of these error messages is that they 
are suitable for presenting to the human initiator of the job.

3.5 Job Deletion
The CEA server narrows the case where a POST to the /(jobs)/(jobid) is used to 
delete a job, by only deleting the job if there is a POST parameter of the name 
ACTION with a value “DELETE”. This is done to make it less likely that 
programming errors will result in accidental job deletion.

3.6 UWS Interface type
When registering a UWS service, it will naturally be registered as a vr:Capability of 
either vr:Service or one of its subtypes according to VOResouce IVOA 
standard[17]. The vr:Capability has a number of possible vr:Interfaces that are 
used to register the physical endpoint of the service that provides the capability. 
Currently there are specialized subtypes of vr:Interface called vr:WebBrowser and 
vr:WebService, which are intended to indicating a general graphical interface that 
can be driven from a web browser and a SOAP web service respectively. It would 
be useful if a specific subtype were created “vr:UWS” that indicated an interface 
that followed the UWS pattern.

4 Composite Objects Schema
The UWS pattern document [1] does not explicitly specify any of the schema for 
the end points which might be viewed as returning “composite” metadata about the 
job i.e.



● /(jobs)/(jobid) – metadata about the job itself.
● /(jobs)/(jobid)/results – metadata about the results.

Although it is generally considered good REST style to allow the client to “drill 
down” by following hyperlinks to new URIs to obtain more detailed information 
about an entity there is obviously a balance to be struck of presenting enough 
useful metadata at each level, possibly repeating some that could be obtained by 
drilling down. This section discusses the cases where the exact form of the 
metadata is debatable.

4.1 Job Metadata
Although there are specialized endpoints that are designed to return specific 
pieces of the job metadata, e.g. termination time and phase, it seems reasonable 
to include these small metadata in the response to the main job URI itself 
/(jobs)/(jobid). A proposed schema for what is returned is described in the 
appendix to this document.
The CEA server actually returns an extension of this schema object to include 
some extra metadata that is specific to CEA.

4.2 Results Metadata
A simple schema element for the results object is presented in the schema 
attached in the appendix.
In the case of a pure CEA service this results metadata is actually redundant as 
the parameter names and the endpoints are all fully described by the 
CEAApplication entry within the registry. However, a general UWS client would 
always read the results metadata to determine how to obtain the results.

5 Good REST style
Although there is obviously a great deal of flexibility in the REST style of 
webservice design, and this section list some specific recommendations to help to 
make UWS services more interoperable.

5.1 Returning xml or html versions of objects
A UWS service should always be prepared to return a the pure xml version of the 
various objects as that makes it unambiguous (together with the attached XML 
schema) how to parse the responses to obtain the specific metadata that the client 
might need.
This need should also be balanced in implementations by the desire to be able to 
interactively drive the UWS job execution from within a standard web browser as 
described in section 6.In this case it is desirable to return HTML to the client, along 
with addition controls to allow the client to move to the next stage in the UWS 
pattern. Modern browsers allow xml to be transformed to html at the client using 
XSLT[16], so an implementation can possibly save effort by always returning an 
xml representation with the “xml-stylesheet” processing instruction pointing to 
xml to convert to html. 



5.2 Identifying links.
As has been stated above following links is good REST style, and to identify links 
within the xml, the XLINK schema has been used.

5.3 Redirects and Reloads
The correct functioning of a UWS server depends upon issuing redirection and 
reloading commands to the client. These are done using mechanisms from within 
the HTTP 1.1 standard, but are repeated here for clarity as there have been 
historically various interpretations of these mechanisms by both HTTP clients and 
servers.

5.3.1 Redirect after a POST
Status 303 should returned and “Location” header set to the URL of the desired 
redirection address. This is exactly as specified by section 10.4.4 of RFC2616, but 
is in contrast to some historical uses of Status 302 for the same purpose that arose 
from the HTTP 1.0 specification.
This sort of redirection is used in the response to the initial POST that creates a 
new job in UWS.
Many browsers and servers still use the 302 status for this purpose, which strictly 
speaking cannot be used because the http method should not be changed for a 
302 redirection.

5.3.2 Reload later
Status 503 should be returned with a “Retry-After” header set to the time after 
which the client should try to reload the resource. This is exactly as specified in 
section 10.5.4 of RFC2616.
This sort of “reload later” action can be used as the response to a request for a 
result before the result is yet available.
Although this is a standards compliant way of asking for a reload, it does not 
appear to be widely implemented in browsers, which still seem to implement the 
deprecated HTML <meta http-equiv="refresh"/> as a way of effecting a 
reload later.

6 Evolution  of current DAL protocols
One of the attractions of the “Simple” DAL access protocols as they have been 
designed is that they are synchronous and can easily be driven by a standard 
HTML browser. Although at first reading it would seem that the UWS pattern 
involves a more complex interaction that would not be suitable for simple driving 
via a web browser, this need not necessarily be the case, a typical browser 
session could consist of

1. A form (or in the specific case of CEA an Xform) is presented to the user 
with the action endpoint equal to the /(jobs) URI on the UWS service

2. The UWS service responds by sending a redirect to the /(jobs)/(jobid), 
where the job is presented with a simple button to start it.



3. The user starts the job by pressing the button, which causes the UWS 
server to respond with  redirect back to the /(jobs)/(jobid) page with suitable 
headers to cause automatic polling of the job page.

4. When the job indicates that it has finished the user then follows the links to 
the results that are displayed on the job summary page.

6.1 Miscellaneous issues 
This section lists some other more speculative techiques that could be used to 
make interaction with UWS services even more seamless.

6.1.1 AutoRun
The UWS pattern deliberately separates the steps of creating the job and starting 
the job so that other aspects of job control may be set before starting the job. If a 
client it willing to accept the default values for these options then the interaction 
could be simplified by allowing the job to be automatically submitted to the run 
state on job creation. This could perhaps be achieved by a special parameter 
attached to the URL of the original job creation URL.

6.1.2 “Pseudo-Synchronous” Execution
Although one of the primary goals of the UWS patterns is to provide 
asynchronous execution, it would not be difficult to provide an appearance of 
“synchronous” operation for a client that would follow redirects and obey reload 
requests as discussed in section 5.3 Redirects and Reloads. As in the example 
above all that is needed is a way of signaling at job creation time that the pseudo-
synchronous mode was desired.

7 Conclusions
The UWS pattern is a relatively “light weight” protocol to implement, whilst at the 
same time as bringing the benefits of asynchrony to allow more complex 
interactions with the calling services. It would appear to be a good candidate 
pattern to use for DAL v2 services to as thy evolve to include this asynchrony 
requirement. 
There are a number of additions to UWS described in [3] that the author believes 
would enhance the generality and usability of the pattern.

1. Control of the execution status of the job by POSTing to the phase object – 
i.e. the /(jobs)/(jobid)/phase endpoint

2. The addition of an extra standard job phase of “ABORTED” to indicate when 
the job has been aborted.

3. An additional UWS object called destruction time that can be accessed at 
/(jobs)/(jobid)/destruction that determines the time at which the UWS server 
will destroy all records and results of a particular job. Correspondingly, the 
“termination time” object only refers to the time at which the job execution is 
terminated.



4. An extra UWS object called error that can be accessed at 
/(jobs)/(jobid)/error that can be used to report in detail the any error 
associated with the job.

Appendix 1 Schema
UWS schema for reponses
<?xml version="1.0" encoding="UTF-8"?>
<!-- $Id: UWS.xsd,v 1.1.2.2 2008/05/07 12:15:00 pah Exp $ -->
<!-- proposal for basic UWS schema - Paul Harrison May 2008 -->
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
   targetNamespace="http://www.ivoa.net/xml/UWS/v0.9" 
xmlns:uws="http://www.ivoa.net/xml/UWS/v0.9"
   xmlns:xlink="http://www.w3.org/1999/xlink"
   elementFormDefault="qualified"
   >
   <xs:import namespace="http://www.w3.org/1999/xlink" 
schemaLocation="../../../stc/STC/v1.30/XLINK.xsd"/>
<!--
  <xs:import namespace="http://www.w3.org/1999/xlink" 
schemaLocation="http://www.ivoa.net/xml/Xlink/xlink.xsd"/>
-->

   <xs:complexType name="ShortJobDescription">
      <xs:sequence>
         <xs:element ref="uws:phase"></xs:element>
      </xs:sequence>
      <xs:attribute name="id" type="uws:job-identifier-type" 
use="required"></xs:attribute>
      <xs:attributeGroup ref="uws:reference"></xs:attributeGroup>
   </xs:complexType>
   <xs:attributeGroup name="reference">
    <xs:annotation>
      <xs:documentation>standard xlink references</xs:documentation>
    </xs:annotation>
    <xs:attribute ref="xlink:type" use="optional" default="simple"/>
    <xs:attribute ref="xlink:href" use="optional"/>
  </xs:attributeGroup>
   
  <xs:simpleType name="ExecutionPhase">
      <!-- need to think a little here about the implication of allowing a "re-
entrant" application that is capable of running mini-jobs...probably this is 
indicated with a different state varible entirely -->
      <xs:annotation>
         <xs:documentation>
            Enumeration of possible phases of job execution
         </xs:documentation>
      </xs:annotation>
      <xs:restriction base="xs:string">
         <xs:enumeration value="PENDING">
            <xs:annotation>
               <xs:documentation>
                  The first phase a job is entered into - this is where a job is 
being set up but no request to run has occurred.
               </xs:documentation>
            </xs:annotation>



         </xs:enumeration>
         <xs:enumeration value="QUEUED">
            <xs:annotation>
               <xs:documentation>
                  An job has been accepted for execution but is waiting
                  in a queue
               </xs:documentation>
            </xs:annotation>
         </xs:enumeration>
         <xs:enumeration value="EXECUTING">
            <xs:annotation>
               <xs:documentation>An job is running</xs:documentation>
            </xs:annotation>
         </xs:enumeration>
         <xs:enumeration value="COMPLETED">
            <xs:annotation>
               <xs:documentation>
                  An job has completed successfully
               </xs:documentation>
            </xs:annotation>
         </xs:enumeration>
         <xs:enumeration value="ERROR">
            <xs:annotation>
               <xs:documentation>
                  Some form of error has occurred
               </xs:documentation>
            </xs:annotation>
         </xs:enumeration>
         <xs:enumeration value="UNKNOWN">
            <xs:annotation>
               <xs:documentation>
                  The job is in an unknown state
               </xs:documentation>
            </xs:annotation>
         </xs:enumeration>
         <xs:enumeration value="HELD">
            <xs:annotation>
               <xs:documentation>
                  The job is HELD pending execution and will not
                  automatically be executed (cf pending)
               </xs:documentation>
            </xs:annotation>
         </xs:enumeration>
         <xs:enumeration value="SUSPENDED">
            <xs:annotation>
               <xs:documentation>
                  The job has been suspended by the system during
                  execution
               </xs:documentation>
            </xs:annotation>
         </xs:enumeration>
         <xs:enumeration value="ABORTED">
            <xs:annotation>
               <xs:documentation>
                  The job has been aborted, either by user request or by the 
server because of lack or overuse of resources.



               </xs:documentation>
            </xs:annotation>
         </xs:enumeration>
      </xs:restriction>
   </xs:simpleType>
   
   <xs:complexType name="JobSummary">
      <xs:sequence>
         <xs:element name="jobId" type="uws:job-identifier-type" />
         <xs:element ref="uws:phase" />
         <xs:element ref="uws:quote" />
         <xs:element name="startTime" type="xs:dateTime" />
         <xs:element name="endTime" type="xs:dateTime" />
         <xs:element ref="uws:termination" />
         <xs:element ref="uws:destruction"/>
     </xs:sequence>
   </xs:complexType>
   <xs:simpleType name="job-identifier-type">
      <xs:annotation>
         <xs:documentation>
            The identifier for the job
         </xs:documentation>
      </xs:annotation>
      <xs:restriction base="xs:string" />
   </xs:simpleType>
   
   <xs:element name="job" type="uws:JobSummary">
      <xs:annotation>
         <xs:documentation>
            This is the information that is returned when a GET is made
            for a single job resource - i.e. /(jobs)/(jobid)
         </xs:documentation>
      </xs:annotation></xs:element>
   <xs:element name="phase" type="uws:ExecutionPhase">
      <xs:annotation>
         <xs:documentation>
            the execution phase - returned at /(jobs)/(jobid)/phase
         </xs:documentation>
      </xs:annotation></xs:element>
   <xs:element name="quote" type="xs:dateTime">
      <xs:annotation>
         <xs:documentation>
            A Quote predicts when the job is likely to complete - returned at 
/(jobs)/(jobid)/quote
            TODO - how to encode "don't know"
         </xs:documentation>
      </xs:annotation></xs:element>
   <xs:element name="termination" type="xs:dateTime">
      <xs:annotation>
         <xs:documentation>
            The time at which the job should be aborted if it is still
            running - returned at /(jobs)/(jobid)/termination
         </xs:documentation>
      </xs:annotation></xs:element>
   <xs:element name="destruction" type="xs:dateTime">
      <xs:annotation>



         <xs:documentation>
            The time at which the whole job + records + results will be 
destroyed. returned at /(jobs)/(jobid)/destruction
         </xs:documentation>
      </xs:annotation>
      </xs:element>

   <xs:element name="jobList">
        <xs:annotation>
           <xs:documentation>
              The list of job references returned at /(jobs)
           </xs:documentation>
        </xs:annotation>
        <xs:complexType>
            <xs:annotation>
               <xs:documentation>
                  ISSUE - do we want to have any sort of paging or
                  selection mechanism in case the job list gets very
                  large? Or is that an unnecessary complication...
               </xs:documentation>
            </xs:annotation>
            <xs:sequence>
            <xs:element name="jobref" type="uws:ShortJobDescription" 
maxOccurs="unbounded" minOccurs="0"></xs:element>
         </xs:sequence>
      </xs:complexType>
   </xs:element>

   <xs:complexType name="ResultReference">
      <xs:annotation>
         <xs:documentation>
            A reference to a UWS result
         </xs:documentation>
      </xs:annotation>
      <xs:sequence>
         <xs:element ref="uws:phase"></xs:element>
      </xs:sequence>
      <xs:attribute name="id" type="xs:string"></xs:attribute>
      <xs:attributeGroup ref="uws:reference"></xs:attributeGroup>
   </xs:complexType>
   <xs:element name="resultList">
        <xs:annotation>
           <xs:documentation>
              The element returned for /(jobs)/(jobid)/results
           </xs:documentation>
        </xs:annotation>
        <xs:complexType>
         <xs:sequence>
            <xs:element name="result" type="uws:ResultReference" 
maxOccurs="unbounded" minOccurs="0"></xs:element>
         </xs:sequence>
      </xs:complexType>
   </xs:element>
</xs:schema>



Appendix 2 References

[1] G. Rixon, The Universal Worker Service 
http://www.ivoa.net/internal/IVOA/IvoaGridAndWebServices/UWS-0.3.pdf

[2] P. Harrison, Proposal for a Common Execution Architecture, 
http://www.ivoa.net/Documents/latest/CEA.html

[3] R. Fielding, Architectural Styles andthe Design of Network-based Software 
Architectures

[4] D. Tody, R. Plante, Simple Image Access Specification, 
http://www.ivoa.net/Documents/latest/SIA.html

[5] D.Tody, M. Dolensky et al., Simple Spectral Access Protocol, 
http://www.ivoa.net/Documents/latest/SSA.html

[6] Table Access Protocol, work in progress  http://www.ivoa.net/cgi-
bin/twiki/bin/view/IVOA/TableAccess

[7] VO Support Interfaces, work in progress http://www.ivoa.net/cgi-
bin/twiki/bin/view/IVOA/VOSIHome

[8] VO Security, work in progress, http://www.ivoa.net/cgi-
bin/twiki/bin/view/IVOA/SecurityHome

[9] Grid and Web Services Working Group of IVOA, work in progress, 
http://www.ivoa.net/twiki/bin/view/IVOA/IvoaGridAndWebServices

[10] P. Harrison, CEA Application Model, 
http://www.jb.man.ac.uk/~pah/ivoa/CEAApplicationDM.html

[11] P. Harrison, CEA  Interfaces,  http://www.jb.man.ac.uk/~pah/ivoa/CEAInterface.html

[12] Xforms 1.0, http://www.w3.org/TR/xforms/

[13] XLink 1.0, http://www.w3.org/TR/xlink/

[14] HTTP 1.1, rfc2616  http://www.w3.org/Protocols/rfc2616/rfc2616.html

[15] VOTable 1.1, F. Ochsenbein et al. ,http://www.ivoa.net/Documents/latest/VOT.html

[16] XSLT 1.0, http://www.w3.org/TR/xslt

[17] VOResource: an XML Encoding Schema for Resource Metadata 1.03,  R.Plante et al. 
http://www.ivoa.net/Documents/latest/VOResource.html

http://www.ivoa.net/Documents/latest/VOResource.html
http://www.ivoa.net/Documents/latest/VOResource.html
http://www.ivoa.net/Documents/latest/VOResource.html
http://www.w3.org/TR/xslt
http://www.w3.org/TR/xslt
http://www.w3.org/TR/xslt
http://www.ivoa.net/Documents/latest/VOT.html
http://www.ivoa.net/Documents/latest/VOT.html
http://www.ivoa.net/Documents/latest/VOT.html
http://www.w3.org/Protocols/rfc2616/rfc2616.html
http://www.w3.org/Protocols/rfc2616/rfc2616.html
http://www.w3.org/Protocols/rfc2616/rfc2616.html
http://www.w3.org/TR/xlink/
http://www.w3.org/TR/xlink/
http://www.w3.org/TR/xlink/
http://www.w3.org/TR/xforms/
http://www.w3.org/TR/xforms/
http://www.w3.org/TR/xforms/
http://www.jb.man.ac.uk/~pah/ivoa/CEAInterface.html
http://www.jb.man.ac.uk/~pah/ivoa/CEAInterface.html
http://www.jb.man.ac.uk/~pah/ivoa/CEAInterface.html
http://www.jb.man.ac.uk/~pah/ivoa/CEAApplicationDM.html
http://www.jb.man.ac.uk/~pah/ivoa/CEAApplicationDM.html
http://www.jb.man.ac.uk/~pah/ivoa/CEAApplicationDM.html
http://www.ivoa.net/twiki/bin/view/IVOA/IvoaGridAndWebServices
http://www.ivoa.net/twiki/bin/view/IVOA/IvoaGridAndWebServices
http://www.ivoa.net/twiki/bin/view/IVOA/IvoaGridAndWebServices
http://www.ivoa.net/cgi-bin/twiki/bin/view/IVOA/SecurityHome
http://www.ivoa.net/cgi-bin/twiki/bin/view/IVOA/SecurityHome
http://www.ivoa.net/cgi-bin/twiki/bin/view/IVOA/SecurityHome
http://www.ivoa.net/cgi-bin/twiki/bin/view/IVOA/SecurityHome
http://www.ivoa.net/cgi-bin/twiki/bin/view/IVOA/SecurityHome
http://www.ivoa.net/cgi-bin/twiki/bin/view/IVOA/SecurityHome
http://www.ivoa.net/cgi-bin/twiki/bin/view/IVOA/VOSIHome
http://www.ivoa.net/cgi-bin/twiki/bin/view/IVOA/VOSIHome
http://www.ivoa.net/cgi-bin/twiki/bin/view/IVOA/VOSIHome
http://www.ivoa.net/cgi-bin/twiki/bin/view/IVOA/VOSIHome
http://www.ivoa.net/cgi-bin/twiki/bin/view/IVOA/VOSIHome
http://www.ivoa.net/cgi-bin/twiki/bin/view/IVOA/VOSIHome
http://www.ivoa.net/cgi-bin/twiki/bin/view/IVOA/TableAccess
http://www.ivoa.net/cgi-bin/twiki/bin/view/IVOA/TableAccess
http://www.ivoa.net/cgi-bin/twiki/bin/view/IVOA/TableAccess
http://www.ivoa.net/cgi-bin/twiki/bin/view/IVOA/TableAccess
http://www.ivoa.net/cgi-bin/twiki/bin/view/IVOA/TableAccess
http://www.ivoa.net/cgi-bin/twiki/bin/view/IVOA/TableAccess
http://www.ivoa.net/Documents/latest/SSA.html
http://www.ivoa.net/Documents/latest/SSA.html
http://www.ivoa.net/Documents/latest/SSA.html
http://www.ivoa.net/Documents/latest/SIA.html
http://www.ivoa.net/Documents/latest/SIA.html
http://www.ivoa.net/Documents/latest/SIA.html
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
http://www.ivoa.net/Documents/latest/CEA.html
http://www.ivoa.net/Documents/latest/CEA.html
http://www.ivoa.net/Documents/latest/CEA.html
http://www.ivoa.net/internal/IVOA/IvoaGridAndWebServices/UWS-0.3.pdf
http://www.ivoa.net/internal/IVOA/IvoaGridAndWebServices/UWS-0.3.pdf
http://www.ivoa.net/internal/IVOA/IvoaGridAndWebServices/UWS-0.3.pdf

	1Introduction
	1.1Relationship between CEA and UWS

	2UWS REST Interface for CEA
	2.1Implementation Details
	2.2Job Control Language

	3Proposed Changes to UWS 0.3.
	3.1The Quote and Job control.
	3.2Extra Job State
	3.3Termination Time and Job Destruction
	3.4Error Object
	3.5Job Deletion
	3.6UWS Interface type

	4Composite Objects Schema
	4.1Job Metadata
	4.2Results Metadata

	5Good REST style
	5.1Returning xml or html versions of objects
	5.2Identifying links.
	5.3Redirects and Reloads
	5.3.1Redirect after a POST
	5.3.2Reload later


	6Evolution of current DAL protocols
	6.1Miscellaneous issues 
	6.1.1AutoRun
	6.1.2“Pseudo-Synchronous” Execution


	7Conclusions

