The Smple API for Grid
Applications (SAGA)

Thilo Kielmann
Vrije Universiteit, Amsterdam
kielmann@cs.vu.nl

European Research Network on Foundations, Software Infrastructures and Applications for large scale distributed, GRID and Peer- to- Peer Technologies

Brokering
Service

Information
Service

communication

[applicatinn J =

Monitoring
Service

- N

X application]

Functional Properties of a Grid API

What applications need to do:

Access to compute resources, job spawning
and scheduling

Access to file and data resources

Communication between parallel and
distributed processes

Application monitoring and steering

uropean Research Network on Foundations, Software Infrastructures and Applications for large scale distributed, GRID and Peer- to- Peer Technologies

Non- functional Properties of a Grid API

What else needs to be taken care of:
e Performance

 Fault tolerance

e Security and trust

« Platform independence

European Research Network on Foundations, Software Infrastructures and Applications for large scale distributed, GRID and Peer- to- Peer Technologies

x

lore G RED_
Simple API for Grid Applications (SAGA)

e SAGA- RG and SAGA- CORE- WG within GGF are
working on an upcoming standard for a simple
Grid API

 Design principles:
— Simplicity (ease of use)
— Strictly driven by application use cases

« APl defines large part of a programming model
for Grid- aware applications

x

Lore G RAED—

Functionality in SAGA

Jobs (submission and management)
Files (and logical/ replicated files)
Streams (sockets like)

Application steering and monitoring
Later in SAGA:

— Workflow (task dependencies)

— GridRPC (draft exists)

— GridCPR (input pending from WG)
Security (authentication)

Error handling

Asynchronous operations (tasks)

Euro

pean Research Network on Foundations, Software Infrastructures and Applications for large scale distributed, GRID and Peer- to- Peer Technologies

Example: Reading a Remote File (C+ +)

#include <string>

#include <iostream>
#include <saga.h>

int main () {
try {
// open a remote file
saga::file f (“gsiftp://ftp.university.edu/pub/INDEX");

// read data
while (string s = f.read (100)) {
std::cout << s;
}
} catch (saga::exception e) {
std::cerr << e.what() << std::endl;

European Research Network on Foundations, Software Infrastructures and Applications for large scale distributed, GRID and Peer- to- Peer Technologies

SAGA Files

class File {

void read (in 1long
out string
out long
void write (in long
in string
out long
void seek (in long
in SeekMode
out long
void readV (inout array<ivec>
void writeV (inout array<ivec>

// plus more optimized (bulk) versions

}
(directories left out for brevity)

len in,
buffer,
len out);
len in,
buffer,
len out);
offset,
whence,
position);

ivec);
ivec);

European Research Network on Foundations, Software Infrastructures and Applications for large scale distributed, GRID and Peer- to- Peer Technologies

SAGA Replicated Files

class LogicalFile {

void addLocation (in name) 7
void removeLocation (in name);
void listLocations (out array<string, 1> names);
void replicate (in name) ;

(directories left out for brevity)

European Research Network on Foundations, Software Infrastructures and Applications for large scale distributed, GRID and Peer- to- Peer Technologies

Example: Running a Remote Job (C+ +)

#include <iostream>
#include <saga.h>
int main() {
try{
std::iostream in, out, err;
saga::job_service js;
saga::job job = js.rundob (“host.university.edu”,
“/bin/date”, &in, &out, &err);
while (job.getJobState()
job.getJobState ()
std: :cout << out;
std: :cerr << err;

!= saga::job::Done &&
1=

saga::job::Failed) {

}
catch (saga::exception e){
std::cerr << e.what() << std::endl;

[

European Research Network on Foundations, Software Infrastructures and Applications for large scale distributed, GRID and Peer- to- Peer Technologies

SAGA Jobs

interface Job {

void get job id (out string job _id);
void get state (out state state);
void get job definition (out job definition job def);

void get stdin (out opaque stdin);
void get stdout (out opaque stdout);
void get stderr (out opaque stderr) ;
void suspend (void);
void resume (void);
void checkpoint (void);
void migrate (in job definition job def);
void terminate (void);
void signal (in int signum) ;

European Research Network on Foundations, Software Infrastructures and Applications for large scale distributed, GRID and Peer- to- Peer Technologies

SAGA JobService

interface JobService {

void create job (in string res mgr,
in job _definition jobDef,
out job job) ;
void run_job (in string res_mgr,
in string commandline,
out opaque stdin,
out opaque stdout,
out opaque stderr,
out job job) ;
void list (out array<string,1> job_ids);
void get job (in string job id,
out job job) ;
void get self (out job job) ;

European Research Network on Foundations, Software Infrastructures and Applications for large scale distributed, GRID and Peer- to- Peer Technologies

SAGA Security

enum contextType {
GSI
MyProxy
SSH =
Kerberos =

-

-

-

UserPass

~

u & W DN = O

KeyStore
}i
interface Context extends-all SAGA.Attribute {
constructor (in contextType type);

getType (out contextType type);
}

e Every SAGA object gets a Session with a
Context as parameter to its constructor.

European Research Network on Foundations, Software Infrastructures and Applications for large scale distributed, GRID and Peer- to- Peer Technologies

SAGA Error Handling

 Errors are signaled using exceptions
e 14 SAGA exceptions have been defined

European Research Network on Foundations, Software Infrastructures and Applications for large scale distributed, GRID and Peer- to- Peer Technologies

SAGA Tasks

e Asynchronous operations
e Bulk (async.) operations
e Single-threaded implementation support

package Task {

enum state {
Unknown = -1,

New 1,
Running = 2,
Done = 3,
Failed = 4

}i

European Research Network on Foundations, Software Infrastructures and Applications for large scale distributed, GRID and Peer- to- Peer Technologies

Tasks and Containers

interface Task {
void run ();
void wait (in double timeout,
out boolean finished);
void cancel ();
void get state (out State state);

}
class TaskContainer {

void add (in Task task);
void remove (in Task task);
void run ();

void wait (in double timeout,

out array<Task,1> finished);

void cancel ();

void get states (out array<State,1> states);

void get tasks (out array<Task,1> tasks);
1

J
European Research Network on Foundations, Software Infrastructures and Applications for large scale distributed, GRID and Peer- to- Peer Technologies

Instantiating Tasks

Have three versions of each operation:
e Synchronous

« Asynchronous (start immediately)

« Task (start explicitly)

d.mkdir ("test/");
saga::task t 1 = d.mkdir <sync> ("test/"); // Donme
saga::task t 2 = d.mkdir <async> ("test/"); // Running
saga::task t 3 = d.mkdir <task> ("test/"); // New

t 3.run ()

t 2.wait ();
t 3.wait ();

European Research Network on Foundations, Software Infrastructures and Applications for large scale distributed, GRID and Peer- to- Peer Technologies

x

lore GRAAED_—
Summary: SAGA

Standardize a simple API for Grid applications
 Driven by user communities

APl completion Q2/ 2006

— Currently nailing down last open issues
Implementations:

— C++ (SAGA- A) almost complete

— Java

e DEISA (Edinburgh): Job and Files
e OMII- UK: almost complete

European Research Network on Foundations, Software Infrastructures and Applications for large scale distributed, GRID and Peer- to- Peer Technologies

Implementing SAGA:
dynamically loaded proxies

Application
SAGA API

Runtime Engine

European Research Network on Foundations, Software Infrastructures and Applications for large scale distributed, GRID and Peer- to- Peer Technologies

x

Lore G RAED—

Conclusions

e SAGA: Simple API to various Grid systems
and middlewares

e Work in progress:
— Finalizing API spec
— Completing implementations
 Proxies (*adaptors”)

wiki.cct.lsu.edu/ saga/ space/ start

https://forge.gridforum.org/ projects/ saga-rg/

