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Functional Properties of a Grid API

What applications need to do:

Access to compute resources, job spawning
and scheduling

Access to file and data resources

Communication between parallel and
distributed processes

Application monitoring and steering
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Non- functional Properties of a Grid API

What else needs to be taken care of:
e Performance

 Fault tolerance

e Security and trust

« Platform independence
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Simple API for Grid Applications (SAGA)

e SAGA- RG and SAGA- CORE- WG within GGF are
working on an upcoming standard for a simple
Grid API

 Design principles:
— Simplicity (ease of use)
— Strictly driven by application use cases

« APl defines large part of a programming model
for Grid- aware applications
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Functionality in SAGA

Jobs (submission and management)
Files (and logical/ replicated files)
Streams (sockets like)

Application steering and monitoring
Later in SAGA:

— Workflow (task dependencies)

— GridRPC (draft exists)

— GridCPR (input pending from WG)
Security (authentication)

Error handling

Asynchronous operations (tasks)
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Example: Reading a Remote File (C+ +)

#include <string>

#include <iostream>
#include <saga.h>

int main () {
try {
// open a remote file
saga::file f (“gsiftp://ftp.university.edu/pub/INDEX");

// read data
while ( string s = f.read (100) ) {
std::cout << s;
}
} catch (saga::exception e) {
std::cerr << e.what() << std::endl;
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SAGA Files

class File {

void read (in 1long
out string
out long
void write (in long
in string
out long
void seek (in long
in SeekMode
out long
void readV (inout array<ivec>
void writeV (inout array<ivec>

// plus more optimized (bulk) versions

}
(directories left out for brevity)

len in,
buffer,
len out );
len in,
buffer,
len out );
offset,
whence,
position );

ivec);
ivec);
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SAGA Replicated Files

class LogicalFile {

void addLocation (in name ) 7
void removeLocation (in name );
void listLocations (out array<string, 1> names );
void replicate (in name ) ;

(directories left out for brevity)

European Research Network on Foundations, Software Infrastructures and Applications for large scale distributed, GRID and Peer- to- Peer Technologies



Example: Running a Remote Job (C+ +)

#include <iostream>
#include <saga.h>
int main() {
try{
std::iostream in, out, err;
saga::job_service js;
saga::job job = js.rundob (“host.university.edu”,
“/bin/date”, &in, &out, &err);
while ( job.getJobState()
job.getJobState ()
std: :cout << out;
std: :cerr << err;

!= saga::job::Done &&
1=

saga::job::Failed ) {

}
catch (saga::exception e){
std::cerr << e.what() << std::endl;

[
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SAGA Jobs

interface Job {

void get job id (out string job _id);
void get state (out state state);
void get job definition (out job definition job def);

void get stdin (out opaque stdin);
void get stdout (out opaque stdout);
void get stderr (out opaque stderr) ;
void suspend (void);
void resume (void);
void checkpoint (void);
void migrate (in job definition job def);
void terminate (void);
void signal (in int signum) ;
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SAGA JobService

interface JobService {

void create job (in string res mgr,
in job _definition jobDef,
out job job) ;
void run_job (in string res_mgr,
in string commandline,
out opaque stdin,
out opaque stdout,
out opaque stderr,
out job job) ;
void list (out array<string,1> job_ids);
void get job (in string job id,
out job job) ;
void get self (out job job) ;
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SAGA Security

enum contextType {
GSI
MyProxy
SSH =
Kerberos =

-

-

-

UserPass

~

u & W DN = O

KeyStore
}i
interface Context extends-all SAGA.Attribute {
constructor (in contextType type);

getType (out contextType type);
}

e Every SAGA object gets a Session with a
Context as parameter to its constructor.
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SAGA Error Handling

 Errors are signaled using exceptions
e 14 SAGA exceptions have been defined
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SAGA Tasks

e Asynchronous operations
e Bulk (async.) operations
e Single-threaded implementation support

package Task {

enum state {
Unknown = -1,

New 1,
Running = 2,
Done = 3,
Failed = 4

}i
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Tasks and Containers

interface Task {
void run ();
void wait (in double timeout,
out boolean finished);
void cancel ();
void get state (out State state);

}
class TaskContainer {

void add (in Task task);
void remove (in Task task);
void run ();

void wait (in double timeout,

out array<Task,1> finished);

void cancel ();

void get states (out array<State,1> states);

void get tasks (out array<Task,1> tasks);
1
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Instantiating Tasks

Have three versions of each operation:
e Synchronous

« Asynchronous (start immediately)

« Task (start explicitly)

d.mkdir ("test/");
saga::task t 1 = d.mkdir <sync> ("test/"); // Donme
saga::task t 2 = d.mkdir <async> ("test/"); // Running
saga::task t 3 = d.mkdir <task> ("test/"); // New

t 3.run ()

t 2.wait ();
t 3.wait ();
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Summary: SAGA

Standardize a simple API for Grid applications
 Driven by user communities

APl completion Q2/ 2006

— Currently nailing down last open issues
Implementations:

— C++ (SAGA- A) almost complete

— Java

e DEISA (Edinburgh): Job and Files
e OMII- UK: almost complete
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Implementing SAGA:
dynamically loaded proxies

Application
SAGA API

Runtime Engine
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Conclusions

e SAGA: Simple API to various Grid systems
and middlewares

e Work in progress:
— Finalizing API spec
— Completing implementations
 Proxies (*adaptors”)

wiki.cct.lsu.edu/ saga/ space/ start

https://forge.gridforum.org/ projects/ saga-rg/




