
IVOA/AstroGrid SSO system and Grid standards; Astro-RG session, GGF17, Tokyo, May 2006 Slide 1

IVOA/AstroGrid SSO
system and Grid standards

Guy Rixon and Keith Noddle

Presentation to Astro-RG at GGF17

IVOA/AstroGrid SSO system and Grid standards; Astro-RG session, GGF17, Tokyo, May 2006 Slide 2

The IVOA SSO scheme

Community

services

Credential

cache

Client

application

A SOAP

Service

MyProxy SAML?

Digital
Signature

Digital
Signature

Delegation

Another

SOAP Service

Delegation

An HTTPS

service

TLS

IVOA/AstroGrid SSO system and Grid standards; Astro-RG session, GGF17, Tokyo, May 2006 Slide 3

AstroGrid implementation (1)

NCSA/GT4

MyProxy
GT4 MyProxy

utilties

Astro Client

Runtime

A SOAP

Service

MyProxy

Signed
CEA task

GT4
SimpleCA

AstroGrid

Workbench
An HTTPS

service

TLS

GT4 delegation
service?

Delegation

IVOA/AstroGrid SSO system and Grid standards; Astro-RG session, GGF17, Tokyo, May 2006 Slide 4

AstroGrid implementation (2)

NCSA/GT4

MyProxy

Astro Client

Runtime

A SOAP

Service

MyProxy

Signed
CEA task

Java

CoG kit

Security
facade

Apache

WSS4J

Security
facade

Apache

WSS4J

Java

CoG kit

IVOA/AstroGrid SSO system and Grid standards; Astro-RG session, GGF17, Tokyo, May 2006 Slide 5

AstroGrid/IVO overlap with Grid

Principles:
X.509 certificates

RFC3820 proxies

PKI including national science CAs

MyProxy

Reused software:
MyProxy, SimpleCA from GT4

RFC3820, trust-anchor support from Java CoG kit

Possible further reuse:
Delegation service from GT4

TLS support from Java CoG kit

Attributes: PERMIS? VOMS?

IVOA/AstroGrid SSO system and Grid standards; Astro-RG session, GGF17, Tokyo, May 2006 Slide 6

Departure from Grid convention

Not built entirely within Grid toolkit

No authentication of services (except TLS)

TLS, but not GSI

Community-based CA

May augment MyProxy with WS-Trust

NCSA/GT4

MyProxy
Astro Client

Runtime

MyProxy

Community

SOAP service

WS-Trust

IVOA/AstroGrid SSO system and Grid standards; Astro-RG session, GGF17, Tokyo, May 2006 Slide 7

Standard support

Little support for Grid standards in mainstream tools

Plenty support in Grid toolkits, e.g.…

…but it’s hard to extract the parts.

GT4 Java CoG OMII

WS-SecureConvRFC3820MyProxy

Is this slowing adoption of the standards?
Could we have some more-separable, loosely-coupled
solutions, please?

Valuable code

Feature

we need

Other

features

Big grid framework

3rd-party code

hidden assumptions

IVOA/AstroGrid SSO system and Grid standards; Astro-RG session, GGF17, Tokyo, May 2006 Slide 8

Proxy-certificate example

RFC3820 supportJCE

JCEEtc.

Java CoG kit

SUN JDK

<<include>>

<<include>>

bouncycastle.org

<<include>>

JCE

Grid JCE
(hypothetical)

Etc.

<<include>>

JCE

IVOA/AstroGrid SSO system and Grid standards; Astro-RG session, GGF17, Tokyo, May 2006 Slide 1

IVOA/AstroGrid SSO
system and Grid standards

Guy Rixon and Keith Noddle

Presentation to Astro-RG at GGF17

This talk tells how a grid-compatible single-sign-on (SSO) system was
concocted in a grid-neutral forum (IVOA) and how a “country cousin”
(AstroGrid) of the core GGF movement managed to implement (some of) it,
eventually, using code recycled from the grid toolkits.

IVOA/AstroGrid SSO system and Grid standards; Astro-RG session, GGF17, Tokyo, May 2006 Slide 2

The IVOA SSO scheme

Community

services

Credential

cache

Client

application

A SOAP

Service

MyProxy SAML?

Digital
Signature

Digital
Signature

Delegation

Another

SOAP Service

Delegation

An HTTPS

service

TLS

This slide shows the architecture of the IVOA single-sign-on (SSO) system adopted (and partly
developed) by AstroGrid.
A client application – desktop GUI or web portal - signs on to the IVO via a MyProxy service
run by its user’s home institution. The client receives a proxy certificate conforming to
RFC3820 which it holds in memory for the duration of the interactive session. The proxy
certificate allows the client to sign digitally messages to web services (following the WS-
Security standard) or to use TLS to secure a connection to an HTTPS service. The client may
also delegate proxy credentials to a web service such that that service may act as the user’s
agent in calling other services. Attributes of the user’s position in the astronomical community
– typically membership of user group with specific access rights – can be passed to services
from attribute servers run by the user’s home community. The mechanism for this is not yet
chosen by IVOA; SAML attribute servers are a possibility.
The proxy credentials may be generated from permanent credentials held by the user and the
proxy put into MyProxy; or the permanent credentials may be stored in MyProxy; or the proxy
credentials may be generated inside MyProxy using a certificate authority (CA) managed by
the community. The method used for any given IVO user depends on the user’s preferences
and the rules of usage of the relevant CAs. E.g. some CAs do not allow permanent credentials
to be put in a third-party MyProxy service; some users may prefer to manage their permanent
credentials on their own system; some users may prefer to register with their local community
and not with a national-level CA. MyProxy makes all these approaches equivalent from the
point of view of the client application.
This scheme is not new; it is basically unchanged since the outline agreements made in Kyoto
in Spring 2005; the diagram is adapted from an AstroGrid paper presented at ADASS2005.
What is new is (a) that the detailed protocols are now being recorded and (b) that some of the
elements are now implemented in the IVO. The parts that AstroGrid has implemented (as
prototypes) are coloured red and the unimplemented parts are blue (and this convention is
used in subsequent slides). The prototype implementation has taken a long time to appear! In
part, this is because of the patchy support for the Grid standards involved; and we shall return
to this at the end of the talk.

IVOA/AstroGrid SSO system and Grid standards; Astro-RG session, GGF17, Tokyo, May 2006 Slide 3

AstroGrid implementation (1)

NCSA/GT4

MyProxy
GT4 MyProxy

utilties

Astro Client

Runtime

A SOAP

Service

MyProxy

Signed
CEA task

GT4
SimpleCA

AstroGrid

Workbench

An HTTPS

service

TLS

GT4 delegation
service?

Delegation

The IVOA schema is fairly general. This slide shows how it has been fitted into
the AstroGrid architecture.

The MyProxy server, the local CA software and the utilities for managing
certificates on the desktop come from GT4. These components can be used
as supplied; they suit the IVO’s use-cases very well.

The client-side code for signing SOAP messages, for TLS connections and for
MyProxy has been added to the Astro Client Runtime (ACR) component. This
component underlies AstroGrid’s Workbench UI and is promoted as an
abstraction layer for other desktop UI programmes. An ACR instance operates
as a local service on its host desktop and can be shared between
programmes. Thus, a proxy certificate obtained via one UI is held in the ACR
and may be used by other UIs: SSO is achieved.

Servers in the Common Execution Architecture (CEA) are enhanced to be
able to check digital signatures on messages.

We still need an implementation of the delegation interface. It is quite likely
that we shall take the delegation service from GT4.

IVOA/AstroGrid SSO system and Grid standards; Astro-RG session, GGF17, Tokyo, May 2006 Slide 4

AstroGrid implementation (2)

NCSA/GT4

MyProxy

Astro Client

Runtime

A SOAP

Service

MyProxy

Signed
CEA task

Java

CoG kit

Security
facade

Apache

WSS4J

Security
facade

Apache

WSS4J

Java

CoG kit

This slide shows some details of the MyProxy and digital-signature
implementations.

We get the MyProxy client from the Java CoG kit; as noted above, the server
comes from GT4.

Most of the digital signature code is in a highly-customized version of Apache
WSS4J, the security extension for Apache Axis. This is difficult code to work
with, and not well-matched to our architecture and use-cases, but OSS
implementations of WS-Security are few and far between.

The crucially “griddish” part of the system is the use of proxy certificates
according to RFC3820. WSS4J does not support RFC3820, even to the
extent of recognizing a proxy certificate and rejecting it with a helpful error-
message. Therefore, we replace the part of WSS4J that checks certificate
chains with that from the Java CoG kit.

To hide the details of the composite implementation, we provide a security-
façade library.

IVOA/AstroGrid SSO system and Grid standards; Astro-RG session, GGF17, Tokyo, May 2006 Slide 5

AstroGrid/IVO overlap with Grid

Principles:
X.509 certificates

RFC3820 proxies

PKI including national science CAs

MyProxy

Reused software:
MyProxy, SimpleCA from GT4

RFC3820, trust-anchor support from Java CoG kit

Possible further reuse:
Delegation service from GT4

TLS support from Java CoG kit

Attributes: PERMIS? VOMS?

Most of the security concepts in our system come from Grid practice. We’ve
managed to build the current prototypes using Globus and Globus-related
parts. As we extend the implementation to cover delegation, TLS and
attributes services, then we hope to use more proven, grid software.

We’ve tried to be good citizens of the Grid movement and have used Grid-
friendly methods wherever possible. We want our grid of astronomy
applications (in which the commodities are specific to astronomy) to be a
client of the general compute grids for science, and we recognize that the
difficult part of this connection is the security. Therefore, we’ve deliberately
chosen methods, structures and software from the grid world where our use
cases allow this.

However… (segue to next slide for the flip side of the argument)

IVOA/AstroGrid SSO system and Grid standards; Astro-RG session, GGF17, Tokyo, May 2006 Slide 6

Departure from Grid convention

Not built entirely within Grid toolkit

No authentication of services (except TLS)

TLS, but not GSI

Community-based CA

May augment MyProxy with WS-Trust

NCSA/GT4

MyProxy
Astro Client

Runtime

MyProxy

Community

SOAP service

WS-Trust

(continue commentary from previous slide) … however, our part of the IVO is
not purely a compute grid. We are not in a position to build it soley with
established grid tool-kits and our climax state is not purely an OGSA-
compatible grid. Thus, we depart in places from the common conventions.

We do not do mutual authentication in requests to servers. Our use-cases do
not demand it and, by leaving out authentication of servers, we reduce the
need to issue and maintain service credentials.

We intend TLS but not GSI for talking to HTTPS services, in order to ease the
implementation and have broader base of reusable code. We might be
persuaded to reverse this decision; but IVOA would need persuasion too.

We still intend to support local, community operated CAs, despite warnings
from Grid people. We see this as at least a necessary, temporary step until all
IVO users are also Grid users.

We like MyProxy but have problems with the ports it requires. The rest of our
system is based entirely on HTTP and we only require participating sites to
open ports 80, 8080 and 443; MyProxy complicates this. We might, in the
medium term, prefer to replace (or augment) MyProxy with a WS-Trust service
for passing credentials to clients.

IVOA/AstroGrid SSO system and Grid standards; Astro-RG session, GGF17, Tokyo, May 2006 Slide 7

Standard support

Little support for Grid standards in mainstream tools

Plenty support in Grid toolkits, e.g.…

…but it’s hard to extract the parts.

GT4 Java CoG OMII

WS-SecureConvRFC3820MyProxy

Is this slowing adoption of the standards?
Could we have some more-separable, loosely-coupled
solutions, please?

Valuable code

Feature

we need

Other

features

Big grid framework

3rd-party code

hidden assumptions

Why did it take so long (Spring 2005 until Spring 2006) to get a prototype
working when all the parts are implemented in OSS Grid code?

As noted above, our system isn’t implemented “within” a grid toolkit (other
than our own). Currently, there is almost no support for concrete Grid
standards in mainstream tool-sets and non-Grid frameworks. We can find
implementations of great value in many Grid toolkits – some examples from
the security domain are shown – but the implementation is often hard to
separate from its environment. Frequently, multiple standards are
implemented in one large component, leading us to package more classes
than we need in our applications. Sometimes a feature seems neatly
packaged and reusable, but is actually coupled to its native framework; or to a
large collection of 3rd-party code; or to other deployment requirements (e.g.
account configuration, naming scheme, permissions, host configuration) that
are so natural to the donor toolkit that they are not actually documented.

Equally, mainstream OSS components have the opposite assumption: that
grid concepts can be ignored. This is, if anything, even more frustrating than
grid-friendly code that we can’t easily use. We’d very much like the OSS world
to acknowledge at least those grid concepts that have IETF recognition.

We realize that the suppliers of Grid toolkits have no moral obligation to
support us with components reusable outside their native framework.
However, it may be in the Grid community’s interests that they do so. Is the
lack of re-usable, loosely-coupled implementation hindering the adoption of
the standards? It certainly hinders our adoption!

IVOA/AstroGrid SSO system and Grid standards; Astro-RG session, GGF17, Tokyo, May 2006 Slide 8

Proxy-certificate example

RFC3820 supportJCE

JCEEtc.

Java CoG kit

SUN JDK

<<include>>

<<include>>

bouncycastle.org

<<include>>

JCE

Grid JCE
(hypothetical)

Etc.

<<include>>

JCE

Take RFC3820 – proxy certificates – as an example. We need to work with
certificate chains that include proxy certificates. The standard way to do
certificates chains in Java is via the Java Cryptography Extension (JCE).
(Press for next effect here.) There is a JCE implementation bundled in the
JDK. Another popular, free one is available from bouncycastle.org. Neither of
these support proxy certificates. JCoG knows proxies, but is not a JCE
provider; it uses a different framework. Therefore, we have to use a non-
standard approach in our application code. When other providers finally do
support RFC3820, we’ll have to change out code back to JCE form to use
their products. (Press for next effect here.) What we’d really like is a JCE
implementation with RFC3820 separate from all the other It would a really
good way to “sell” this Grid standard.

