International
Virtual

Observatory
Alliance

Group Membership Service

Version 1.0

IVOA Working Draft 20181025

Working group

Grid and Web Services
This version

http://www.ivoa.net /documents/GMS /20181025
Latest version

http://www.ivoa.net /documents/GMS

Previous versions

This is the first public release
Author(s)

Brian Major, Patrick Dowler, Giuliano Taffoni, Adrian Damian,

Marco Molinaro
Editor(s)

Brian Major

Abstract

The Group Membership Service (GMS) specification describes a REST
interface for determining whether a user is a member of a group. This in-
formation can be used to protect access to proprietary resources: clients can
issue a call to GMS when an authorization decision needs to be made. Pro-
prietary resources can be any number of things such as data, metadata or
services. Because a single group can be used to protect multiple resources,
GMS enables the creation of groups that represent teams with common au-
thorization rights. GMS offers organizations an interoperable, flexible and

scalable way of protecting a hetergenous set of resources.


http://www.ivoa.net/documents/GMS/20181025
http://www.ivoa.net/documents/GMS

Status of This Document
This is an IVOA Working Draft for review by IVOA members and other

interested parties. It is a draft document and may be updated, replaced, or
obsoleted by other documents at any time. It is inappropriate to use IVOA
Working Drafts as reference materials or to cite them as other than “work in
progress”.

A list of current IVOA Recommendations and other technical documents
can be found at http://www.ivoa.net/Documents/.

Contents
1 Introduction 3
1.1 Proprietary resources . . . . . . . . . ... 3
1.2 Role within the VO Architecture . . . . ... ... ... ... 4
1.3 UseCases . . . . . o oot 4
1.4 Definitions . . . . . . . . .. 5
2 Authorization Requirements 6
3 Groups 6
3.1 Why Groups? . . . . . . . . 6
3.2 Group Identifiers . . . . . ... oo 7
4 GMS Search API 8
4.1 API Definition . . . . . . . .. ... 8
4.2 Search Examples . . . . ... ... ... 10
5 Implementation 11
5.1 Implementation Options . . . . . . .. ... ... ... .... 11
5.2 User Identity . . . . . . .. .. .. 11
5.3 Information Privacy . . . ... ... ... ... ... ..., 11
54 Groupsof Groups . . . . . . . ... 12
A Changes from Previous Versions 12

Acknowledgments

77?77 Or remove the section header 7777


http://www.ivoa.net/Documents/ 

Conformance-related definitions

The words “MUST”, “SHALL”, “SHOULD”, “MAY”, “RECOMMENDED”,
and “OPTIONAL” (in upper or lower case) used in this document are to be
interpreted as described in IETF standard RFC2119 (Bradner, 1997).

The Virtual Observatory (VO) is a general term for a collection of feder-
ated resources that can be used to conduct astronomical research, education,
and outreach. The International Virtual Observatory Alliance (IVOA) is a
global collaboration of separately funded projects to develop standards and
infrastructure that enable VO applications.

1 Introduction

Through standard IVOA protocols, many astronomy data centres and in-
stitutes offer users access to datasets (DALI (Dowler, Demleitner, Tay-
lor and Tody, 2013), Datalink (Dowler, Bonnarel, Michel, Donaldson and
Languignon, 2013), etc), metadata (TAP (Dowler et al., 2010)) and stor-
age (VOSpace (Graham et al., 2018)). In some cases this information is
proprietary—it is only allowed to be accessed by certain individuals. Due
to the wide variety and inherently institute-specific set of rules that may
define how the information is proprietary, it is beneficial to the owners and
maintainers of the rules to have a standard way of describing who has access
to what resources. Additionally, the rules describing resource access may
be determined by an entity external to the holder of these resources. To
these ends, this document sets out a standard, programatic, and interopera-
ble method of determining whether a given user is allowed to access a given
resource.

The ideas presented by GMS enable data centres to do authorization
checks in an interoperable fashion. In the context of authorization, interop-
erability can viewed on two levels: interoperability amongst the cooperating
services within a data centre, and interoperability between data centres. Be-
cause of the orthogonal nature of authorization, these levels amount to the
same problem.

Interoperability aside, GMS describes a simple, general, maintainable,
and scalable approach to performing authorization, and so is a recommended
architectural pattern for managing access to proprietary resources.

1.1 Proprietary resources

Most facilities have a period of time in which only the Principal Investigator’s
team has access to observation metadata and data files. Even without a
proprietary period, time is required to verify and validate observations before
they can be made public.


http://www.ivoa.net

REC
COMPUTERS

InProgress

USER LAYER
Script Based
Desktop Apps Apps
USING _
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 1D
R Q ! VO Query A P
E uages, Units T R
G ’ | spectumom | [ssap| | A O
VO 4 Pafa | T
é | Semantics ObsCoreDM | TAP A O
T A‘pplicaticnRegEx]l SLAP c C
R StandardRegExt SEAP c O
| ;
Y SimpleDALRegExt Formats g g
: R Identifi VOTabl
,,,,, vosi | L e s

[Vospacs | | vopipe SHARING

Data and Metadata Collection
RESOURCE LAYER

FEES
20101004
IVOA Architecture 3 PROVIDERS

Figure 1: Architecture diagram for this document

Storage

Projects also frequently create higher level products such as catalogs and
images. When these products are stored in a data centre, they must be
accessible to only those who are authorized.

Proprietary information exists. For it to be made available in a data
centre to those with authorization, a way of performing that authorization
check is required.

1.2 Role within the VO Architecture

Fig. 1 shows the role this document plays within the IVOA architecture
(Arviset et al., 2010).

GMS can be used by any software that needs to check, for authorization
purposes, whether a user is a member of group. Because of this general use
case, GMS cuts through all of the IVOA and lies squarely in the middle of
the SHARING technical resource in the IVOA architecture diagram.

1.3 Use Cases

Asside from the main use case of restricting access to proprietary resources,
GMS supports a number of other use cases, of both the user and system
variety.



Proprietary information Restricting access to proprietary resources to cer-
tain users.

Homogeneity Using the same mechanism to control access to proprietary
resources in a data centre or in multiple data centres.

Scalability A distributed mechanism that scales linearly with the resources
being protected.

Remotely managing access A project may wish to control access to re-
sources that reside externally.

Access rule sharing A project may consist of a variety of resources that
can be all managed by the same access rules.

Extending the services of a data centre A project that has hosted data
and metadata at a data centre may wish to create value-added services out-
side of the data centre itself. If some of the data or metadata is proprietary,
the extended services may need to determine if a user is allowed to perform
certain action on that data or metadata.

Cooperating institutes Two or more institutes may work together on a
single project that involves proprietary resources so require a common mech-
anism for protecting those resources.

1.4 Definitions

Authentication User identification through credentials or identity provider.
See IVOA Single-Sign-On Profile: Authentication Mechanisms. (Grid and
Web Services Working Group, 2008)

Authorization Making the decision of whether to grant a user permission
to a given resource. The decision can involve knowing the user’s identity.

Resource Something that may require authorization for access. For exam-
ple, a service, a data file, metadata.

User An individual identified by authentication.
Group A set of users.

Grant Authorizing access to a protected resource by assigning a group.



Revoke Removing access to a protected resource by removing an assigned
group.

Owner A user or group of users who may grant or revoke access to a specific
resource.

2 Authorization Requirements

When looking at a system that has proprietary resources that need to be
protected, it is clear that there are two distinct phases to authorization: the
assignment of the rules protecting the resources, and the attempts by various
users to gain access to those resources. They are described here:

1. The owner(s) of a resource may, at any time, change the rules by which
a resource may be accessed. This is the granting and revoking of access.

2. When users try to access resources, the granting rules for that resource
are evaluated at runtime. This is the authorization check.

With these phases in mind and with the use cases defined, we can state
that the goals of authorization are to:

e To allow for restricted access certain resources: only a certain set of
individuals may access certain resources.

e To allow certain individuals to set the access rules on resources. The
owner(s) of the resources need to manage the access rules.

e To be able to re-use granting rules between resources. Projects must
authorize access to a variety of proprietary resources.

e To be able manage granting rules at a single location. Projects should
not have to update each resource on a change to a re-used grant.

e To be able to reference remote granting rules. Proprietary resources
should not be confined to a single institution.

3 Groups

3.1 Why Groups?

Why are groups a good model for authorization? When a system needs to
perform an authorization check on a resource, it is trying to determine if the
authenticated user is allowed access. There are a number of options on how
this can be accomplished.



A simple approach would be to add the identity of the user to the re-
source. However, this is too restrictive as there may be multiple users who
are allowed access. So, we could instead add a list of user identities to the
resource being protected. It becomes a problem when there are two resources
that need protecting by the same set of individuals. This becomes difficult
to maintain because a change in access rules (granting and revoking access)
would mean a change to multiple resources.

So, it becomes clear that this list of users needs to be decoupled from
the resource so that it can be referenced and shared by multiple resources.
To do so, the list must become a single entity than can be referenced by a
name. And so, we must now have a named group of users.

A central repository of groups of users would introduce other problems:
a single point of failure, and the inability to partition groups of users. Thus,
the location of the group must accompany the group reference so that it is
possible to have multiple collections of groups of users and multiple assiciated
GMS services.

Resources must then reference a group by a URI with a location and a
name that is unique within that location. This is called the Group Identifier.

Systems must use the information in the group identifier to query location
to determine if the user is a member of the group. Because the location
may be outside of the immediate vicinity of the resource, this query must
be performed in a standard and accessible manner and so is defined as a
RESTHful interface to group membership.

3.2 Group ldentifiers

A Group Identifier is an IVOID ((Demleitner et al., 2015)) used to uniquely
and universally identify groups. They are attached to proprietary resources
as grants. When it is time to determine group membership, the Group
Identifier is resolved to a particular instance of a GMS service and a check
for membership call is made.

For GMS, there are four important components to the Group Identifier:

1. The scheme: Always ivo indicating it is an interoperable IVOA ID.

2. The authority: This identifies the location or instance of the group
membership service.

3. The path: Always starting with ’/gms’, indicating that it is a group
URI, with ’/instance-name’ which is the name of the particular GMS
instance within the authority.

4. The query: Identifies the group within the authority and instance. The
name of the group.



Below is an example group identifier:

ivo://authority.example.com/gms/instancel?groupName

To resolve the host GMS service URL, one would issue a query to Reg-
TAP ((Demleitner et al., 2013)) to find the accessURL in the interface for
the authority. The following query will return a row for each access_url
and security_method_td combination. The ivoid value is calculated by re-
moving the query string from the group identifier. Since we are looking to
perform a is member call, we ask for the GMS search capability, identified
by the GMS search standardID (see section below).

SELECT access_url, security_method_id

FROM rr.interface

NATURAL JOIN rr.capability

NATURAL JOIN rr.resource

WHERE
ivoid = ’ivo://authority.example.com/gms/instancel’ AND
standard_id = ’ivo://ivoa.net/std/gms#search-1.0’

This would result in an access URL capable of supporting a GMS search
on the group ’groupName’. For example:

http://server.example.com/myGMSImpl/search

4 GMS Search API

4.1 API Definition

The Group Membership Service defines a RESTful API (Fielding, 2000) that
allows for the determination of whether a user is a member of a group. This
is the GMS search capability and is identified by the following standardID:

ivo://ivoa.net/std/gms#search-1.0
Within this capability, there are two functions:

e boolean isMember(Group, User): Return true if User is a member of
Group.

o list<Group> getMemberships(User): Return the list of Groups of
which User is a member.

The resulting REST API for these functions is as follows:

GET /search/{group}
GET /search



Where search represents the access_url from the RegTAP call and
{group} is the groupName part of a Group Identifier.
Two (optional) parameters can be supplied to identify the user:

user=<user-principal>
principal=<principle-type>

An HTTP GET to /search/{group} shall respond with HTTP 200 (OK)
if the user is a member of the {group}. If the user is not a member of the
group, or if the user is not recognized, or if the group is not recognized, the
service shall respond with HTTP 403 (Forbidden).

An HTTP GET to /search shall return HTTP 200 (OK) with a list of
the groupNames in which the user is a member in the response body. The
response must have a Content-Type of text/plain and each group must be
separated by a new line character. If the user is not a member of any groups,
or if the user is not recognized, the response body must be empty.

The user and pricipal parameters are used to identify the user who is the
subject of the membership question. The user field is the username of the
user in context of the principal value. For example, when the principal field
is set to 'X.509’, the user field will contain the user’s distinguished name.
Or, if the principal field is set to ’OpenlD’, the user field would contain the
user’s OpenlD token. For the full list of supported principal types please
refer to the User Identification standard (Note for authors: This is to be
written). If the GMS service does not recognize the value of the principal
parameter, the service shall respond with HTTP 501 (Not Implemented). If
the pricipal parameter is recognized but the user cannot be identified, the
service shall respond with a HTTP 403 (Forbidden) (in a call to /search)
or with an empty list of groups (in a call to /search/{group}).

If the user and principal parameters are not supplied, it is assumed
that the user who is the subject of the membership question is the user
who is making the REST call. This pattern will be in use when the call is
being made by a service that supports and implements the IVOA Credential
Delegation Protocol (Graham et al., 2010). If the user cannot be identified
from the call because they have not authenticated, the service must respond
with HTTP 400 (Bad Request). The other HTTP responses shall be the same
as described above where the user was identified by the user and principal
parameters.

If one of user or principal are supplied, then they both must be supplied.
If only one is supplied then the service must respond with HTTP 400 (Bad
Request).

(Note for authors: It could be that the user and principal parameters
are turned into one parameter that is in URI format and contains enough
information to identify the user across different authentication mechanisms.)



4.2 Search Examples

Example 1 - Group access to a VOSpace Node A user is trying to down-
load a VOSpace file that has the group-read property set to

ivo://authority.example.com/gms/instancel?my-collaboration

This resolves (though a RegTAP query for the search API) to host
http://server.example.com/groupService/search

To authorize the user, the VOSpace service queryies the GMS search
service using the user’s delegated credentials

HTTP GET to http://server.example.com/gmsService/search/my-collaboration

The GMS service identifies the user, consults it’s groups memberhip in-
formation, and returns a response code of 200 when confirming the user is a
member of group 'my-collaboration’.

Example 2 - Group access to table data A user issues an ADQL query
to table with row-level authorzation in a TAP service. A read-group col-
umn defines which group is allowed to read that row. The first row that is
encountered with a non-null read-group has value:

ivo://authority.example.com/gms/instancel?my-other-collaboration

Not wanting to make a REST call for each row that needs to be consulted,
the TAP service asks for all groups for the user on the first group protected
row that is encountered. The service does not have the user’s delegated
credentials, so passes the user information in the search call.

HTTP GET to http://server.example.com/gmsService/search?user=bmajor&pricipal=username

The GMS service returns HT'TP 200 and all the groups in which user
’bmajor’ is a member:

my-collaboration
my-other-collaboration
my-final-collaboration

The TAP services caches this group membership information for the life-
time of the request so that it can be used if necessary when checking other
rows. If a read-group entry with a different IVOID is encountered, the TAP
service must call that GMS service too and add the list of groups to its cache.

10



5 Implementation

5.1 Implementation Options

e Via Grouper (groups in MySQL, users in LDAP)
e LDAP only with memberOf plugin (supports groups-of-groups)

e VOSpace implementation: ContainerNodes = groups, DataNodes =
users

5.2 User Identity

The concept of users and user identity is core to group authorization. When
a system makes a call to a GMS service to determine if the user trying to
access the resource is a member of a group, the GMS service needs to identify
that user with the users in various groups.

(Author note: add reference or table of user identity types.)

The collection of data centres and astronomy institutes likely have many
ways of identifying users. They could be using external identity providers,
they could have a local database of users, or may have a combination of these
and other approaches. This specification does not require such a design.
Instead, it requires simply that users can be uniquely identified within the
scope of a GMS service’s domain. If a user identity reaches beyond the scope
of a GMS service’s domain (such as an X.500 distinguished name (?)), then
it, too, may be referenced by the service.

5.3 Information Privacy

User and group membership information may be private, so who is allowed
to make GMS search calls must be considered when implementing a GMS
service. A GMS implementation may insist that GMS search calls must be
made by a certain privileged account only. This is a reasonable approach
when the service is only used with a single organization, but would require
the distribution of those privleged credentials to any external sites wishing
to use it.

Alternatively, a GMS service could have a policy where only the user
who is the subject of the membership assertions is allowed to make the
GMS search calls. This approach lends itself well to external interoperability
because there need not be any sharing of credentials or trust arrangements
between sites—it is always only the user who makes the service calls, even
when they are transitive. This is the approach recommended in the IVOA
credential delegation protocol (Graham et al., 2010). So, aside from the
architectural benefits of employing this pattern, there are some information
privacy concerns that are addressed.

11



5.4 Groups of Groups

It may be functionally attractive to support groups within groups. If this
is implemented, then the service must ensure that this representation is
reflected by the service API. For example, if an isMember(g) call is made, and
the group g’ is a group within another group in which the user is a member,
then the service must return true. The fact that the service supports groups
within groups is not exposed through the search API, but the API does not
prohibit such an implementation.

If one of the contained groups actually exists at another GMS instance,
perhaps outside of the organization, then the service must transitively query
that service to determine group membership.

A Changes from Previous Versions

No previous versions yet.

References

Arviset, C., Gaudet, S. and the IVOA Technical Coordination Group (2010),
‘IVOA architecture’, IVOA Note.
URL: http://www.ivoa.net/documents/Notes/IVOA Architecture

Bradner, S. (1997), ‘Key words for use in RFCs to indicate requirement
levels’, RFC 2119.
URL: http://www.ietf.org/rfc/rfc2119.txt

Demleitner, M., Harrison, P., Molinaro, M., Greene, G., Dower, T. and
Perdikeas, M. (2013), ‘IVOA registry relational schema’, IVOA Working
Draft.

URL: http://www.ivoa.net/documents/RegTAP/

Demleitner, M., Plante, R., Linde, T., Williams, R. and Noddle, K. (2015),
‘IVOA identifiers, version 2’, IVOA Recommendation.
URL: http://www.ivoa.net/documents/REC/Identifiers

Dowler, P., Bonnarel, F., Michel, L., Donaldson, T. and Languignon, D.
(2013), ‘Datalink’, IVOA Working Draft.
URL: http://www.ivoa.net/documents/DataLink/

Dowler, P., Demleitner, M., Taylor, M. and Tody, D. (2013), ‘Data access
layer interface, version 1.0’, IVOA Recommendation.
URL: http://www.ivoa.net/documents/DALI

12



Dowler, P., Rixon, G. and Tody, D. (2010), ‘Table access protocol version
1.0’, IVOA Recommendation.
URL: http://www.ivoa.net/documents/TAP

Fielding, R. T. (2000), Architectural Styles and the Design of Network-based
Software Architectures, PhD thesis, University of California, Irvine.
URL: http://www.ics.uci.edu/ fielding/pubs/dissertation/top.htm

Graham, M., Morris, D., Rixon, G., Dowler, P., Schaaff, A., Tody, D. and
Major, B. (2018), ‘VOSpace specification - version 2.1’, IVOA Recommen-

dation.
URL: http://www.ivoa.net/documents/VOSpace/

Graham, M., Plante, R., Rixon, G. and Taffoni, G. (2010), ‘IVOA credential
delegation protocol’.
URAL: http://ivoa.net/Documents/Credential Delegation,/20100218/

Grid and Web Services Working Group (2008), ‘IVOA single-sign-on profile:
Authentication mechanisms version 1.01°.

URL: http://www.ivoa.net/documents/latest/SSOAuthMech.html

13



	Introduction
	Proprietary resources
	Role within the VO Architecture
	Use Cases
	Definitions

	Authorization Requirements
	Groups
	Why Groups?
	Group Identifiers

	GMS Search API
	API Definition
	Search Examples

	Implementation
	Implementation Options
	User Identity
	Information Privacy
	Groups of Groups

	Changes from Previous Versions

