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Introduction - Data caching 
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Introduction - Data caching
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What to cache?

Cache for how 
long?

● Reduced data transfers
● Reduced response time
● Reduced resource 

utilization
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Caching needs among work 
groups

How to cache  in the dynamic work flow environment among work groups while querying  distributed 
databases?
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What to cache?

Cache for how 
long?

WHERE TO CACHE?

Solution: Adaptive mobile 
co-operative cache
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Solution: Adaptive mobile 
co-operative cache
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Cache design - 1
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Algorithm - cache granule creation

For each new query{ 

– Fragment query into sub queries

– Cache data as a smallest data object

– Cluster / de-cluster sub queries using association rules 

– Store information in the knowledge pattern base for future use

} 
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Cache design - 2
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Databases
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Algorithm - cache granule selection at each node

For each new query{ 

– Top-down search query index for the biggest granule matching

– Update query index for the frequency of updates and location of the query generation

– Estimate data size

– Cluster / de-cluster sub queries using geographical information

– Store information in the knowledge pattern base for future use

} 
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 Mobile co-operative cache 
architecture

● Common query index 

● Each cache unit stores portable 
data objects

● Cache refreshment is a 
heuristic based on the sub 
query frequency,  time span 
and data size

● Assesses need for the data on 
location basis and performs 
cache data transfers

Query interface to 
query index

Cache units

Algorithm: cache location selection 

For a given time epoch{

For each of the cache node{

● Identify the data usage at the current cache node

● Calculate and estimate the need for the data for other nodes (generate the popularity of the data needed)

● Calculate data transfer costs

● Store information in the knowledge pattern base for future use

} 

}
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Example 
Query trace (semantic query)

● Q1_location1: Names of employees working on CAD/CAM project 

● Q2_location2: Names of employees working on CAD/CAM project at manager level 

● Q3_location1: Find the names of employees who are managing a project      

Query trace - SQL

● Q1_location1: SELECT EMP.ENAME FROM EMP, ASG, PROJ WHERE EMP.ENO = ASG.ENO AND ASG.PNO=PROJ.PNO AND PNAME=”CAD/CAM”

● Q2_location2: SELECT EMP.ENAME FROM EMP, ASG, PROJ WHERE EMP.ENO = ASG.ENO AND ASG.PNO=PROJ.PNO AND PNAME=”CAD/CAM” 
AND  ASG.RESP = “MANAGER”

● Q3_location1: SELECT ENAME FROM EMP,ASG WHERE EMP.ENO = ASG.ENO AND ASG.RESP = “MANAGER”    

EMP ASG

Eno

PROJ

PNAME = 
CAD/CAM

Final result
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Cost parameters & Evaluation 
● Types of queries

– Partial query hits from the cached data

– Query predictability and data ordering patterns

● Query prioritization & balanced cost functions

– Pro9ling for the resource utilization

– Priority variation for shorter and real-time, time shared  
applications

– Data transfer costs

● Response time

– Estimation using entropy measurement

– Queries that need single data source /  multiple data sources

● Cache

– Queries from varied local area groups and cache unit 
personalization

– Cache training time
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Pros and Cons

Advantages

– Allows query indexing for faster data object location

– Query indexing proves to be ideal with slow changing work patterns 
and data loads

– Handles nested queries easily as well as joins from multiple databases

– Improved cache hit ratio  even with random queries

– Sub queries identify the most frequently needed data object, hence 
unused data fragment in the cache can be easily evicted 

E�ciency is a�ected by

– Dependency on the query optimizer's e<ciency for initial queries

– Complexity of the sub query generation / distribution algorithm
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Summary & Future work

● Cached query mobility based on restrictions on the data size of the 
cache unit

● Query approximation

Picture copied from: https://markarmstrongillustration.files.wordpress.com/2010/07/eggbaskets.jpg
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