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 Reduced data transfers
« Reduced response time

 Reduced resource
utilization

What to cache?

Cache for how
long?




Caching needs among work

groups
) L

How to cache in the dynamic work flow environment among work groups while querying distributed
databases? 5
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Solution: Adaptive mobile
co-operative cache

What to cache?

WHERE TO CACHE?

Cache for how
long?



Cache design - 1
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For each new query/{

- Fragment query into sub queries
- Cache data as a smallest data object
- Cluster / de-cluster sub queries using association rules

- Store information in the knowledge pattern base for future use




Cache design - 2
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Databases

Algorithm - cache granule selection at each node

For each new query{

- Top-down search query index for the biggest granule matching

- Update query index for the frequency of updates and location of the query generation
- Estimate data size

- Cluster / de-cluster sub queries using geographical information

- Store information in the knowledge pattern base for future use




Mobile co-operative cache
architecture

Common query index i

Each cache unit stores portable
data objects

Cache refreshment is a
heuristic based on the sub
query frequency, time span
and data size

Assesses need for the data on
location basis and performs
cache data transfers

Query interface to
query index

Algorithm: cache location selection
For a given time epoch{

For each of the cache nodef{

¢ Tdentify the data usage at the current cache node
e Calculate and estimate the need for the data for other nodes (generate the popularity of the data needed)
e Calculate data transfer costs

e Store information in the knowledge pattern base for future use 10




Example

Query trace (semantic query)

Ql_locationl: Names of employees working on CAD/CAM project
Q2_location2: Names of employees working on CAD/CAM project at manager level

Q3_locationl: Find the names of employees who are managing a project

Query trace - SQL

Q1 _locationl: SELECT EMP.ENAME FROM EMP, ASG, PROJ WHERE EMP.ENO

ASG.ENO AND ASG.PNO=PROJ.PNO AND PNAME=”CAD/CAM”

ASG.ENO AND ASG.PNO=PROJ.PNO AND PNAME="CAD/CAM”

Q2_location2: SELECT EMP.ENAME FROM EMP, ASG, PROJ WHERE EMP.ENO
AND ASG.RESP = “MANAGER”

Q3_locationl: SELECT ENAME FROM EMP,ASG WHERE EMP.ENO = ASG.ENO AND ASG.RESP = “MANAGER”
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Cost parameters & Evaluation

« Types of queries

- Partial query hits from the cached data

- Query predictability and data ordering patterns
* Query prioritization & balanced cost functions

- Profiling for the resource utilization

- Priority variation for shorter and real-time, time shared
applications

- Data transfer costs
 Response time

- Estimation using entropy measurement
- Queries that need single data source / multiple data sources
« Cache

- Queries from varied local area groups and cache unit
personalization

- Cache training time 19



Pros and Cons

Advantages

- Allows query indexing for faster data object location

- Query indexing proves to be ideal with slow changing work patterns
and data loads

- Handles nested queries easily as well as joins from multiple databases
- Improved cache hit ratio even with random queries

- Sub queries identify the most frequently needed data object, hence
unused data fragment in the cache can be easily evicted

Efficiency is affected by
- Dependency on the query optimizer's efficiency for initial queries
- Complexity of the sub query generation / distribution algorithm
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Summary & Future work

» Cached query mobility based on restrictions on the data size of the
cache unit

* Query approximation
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Comparison between random
gueries and 30% overlapped
sub queries

Response time
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