Distributed caching for multiple
databases

ING'S

College
LONDON

Road map

Introduction
Problem statement
Solution

Example
Evaluation

Summary & future work

Introduction - Data caching

Cache at client-side

WAN Database

Cache at server-side

E WAN Cache

WAN

LAN

Database

Introduction - Data caching

Cache at client-side

Cache at server-side

LAN i WAN

Database

E Database
! W AN Cache L AN

WAN

—{

 Reduced data transfers
« Reduced response time

 Reduced resource
utilization

What to cache?

Cache for how
long?

Caching needs among work

groups
) L

How to cache in the dynamic work flow environment among work groups while querying distributed
databases? 5

Solution: Adaptive mobile
co-operative cache

What to cache?

bNHERETHDC#%%E%E)

Cache for how
long?

Solution: Adaptive mobile
co-operative cache

What to cache?

WHERE TO CACHE?

Cache for how
long?

Cache design - 1

Query 1l .
Query | Query index
/ query | query I
} Sub planl Sub plan2 !
: s 4 " p4s
|
prl , ".‘ pr2 ,-: pr3 prd pr5 - pl p2 / p3 p4 \pS ™
aggregate @
: : - Cache uni
Final result- q | pra5 \
Final result—q Il
Independent plans: ~ TTTTTmTmmmmmmommssmssssssesoonees
Sub Plan1 : p1->prl AN
Sub Plan2 : p2->pr2 er My, \ 4 A 4
. . prii ipr2i pr3|) |pral) [pr5 of
Algorithm - cache granule creation | el R g

For each new query/{

- Fragment query into sub queries
- Cache data as a smallest data object
- Cluster / de-cluster sub queries using association rules

- Store information in the knowledge pattern base for future use

Cache design - 2

: [Query decomposition]

—

>
A '
Q '
5 2l
o% Query Index
O D
ERsE
2 0o
= =
(oN]
5
a

[Query Execution]

Databases

Algorithm - cache granule selection at each node

For each new query{

- Top-down search query index for the biggest granule matching

- Update query index for the frequency of updates and location of the query generation
- Estimate data size

- Cluster / de-cluster sub queries using geographical information

- Store information in the knowledge pattern base for future use

Mobile co-operative cache
architecture

Common query index i

Each cache unit stores portable
data objects

Cache refreshment is a
heuristic based on the sub
query frequency, time span
and data size

Assesses need for the data on
location basis and performs
cache data transfers

Query interface to
query index

Algorithm: cache location selection
For a given time epoch{

For each of the cache nodef{

¢ Tdentify the data usage at the current cache node
e Calculate and estimate the need for the data for other nodes (generate the popularity of the data needed)
e Calculate data transfer costs

e Store information in the knowledge pattern base for future use 10

Example

Query trace (semantic query)

Ql_locationl: Names of employees working on CAD/CAM project
Q2_location2: Names of employees working on CAD/CAM project at manager level

Q3_locationl: Find the names of employees who are managing a project

Query trace - SQL

Q1 _locationl: SELECT EMP.ENAME FROM EMP, ASG, PROJ WHERE EMP.ENO

ASG.ENO AND ASG.PNO=PROJ.PNO AND PNAME=”CAD/CAM”

ASG.ENO AND ASG.PNO=PROJ.PNO AND PNAME="CAD/CAM”

Q2_location2: SELECT EMP.ENAME FROM EMP, ASG, PROJ WHERE EMP.ENO
AND ASG.RESP = “MANAGER”

Q3_locationl: SELECT ENAME FROM EMP,ASG WHERE EMP.ENO = ASG.ENO AND ASG.RESP = “MANAGER”

11

Cost parameters & Evaluation

« Types of queries

- Partial query hits from the cached data

- Query predictability and data ordering patterns
* Query prioritization & balanced cost functions

- Profiling for the resource utilization

- Priority variation for shorter and real-time, time shared
applications

- Data transfer costs
 Response time

- Estimation using entropy measurement
- Queries that need single data source / multiple data sources
« Cache

- Queries from varied local area groups and cache unit
personalization

- Cache training time 19

Pros and Cons

Advantages

- Allows query indexing for faster data object location

- Query indexing proves to be ideal with slow changing work patterns
and data loads

- Handles nested queries easily as well as joins from multiple databases
- Improved cache hit ratio even with random queries

- Sub queries identify the most frequently needed data object, hence
unused data fragment in the cache can be easily evicted

Efficiency is affected by
- Dependency on the query optimizer's efficiency for initial queries
- Complexity of the sub query generation / distribution algorithm

13

Summary & Future work

» Cached query mobility based on restrictions on the data size of the
cache unit

* Query approximation

14

Comparison between random
gueries and 30% overlapped
sub queries

Response time

1600000 1600000
1400000 1400000
1200000 1200000
1000000 1000000 _
= SubQueries_1
800000 800000 === SubQueries_2
SubQueries_3
600000 600000 = SubQueries_4
m— SubQueries_5
400000 400000
200000 . S 200000
0 0 N\
1000 2000 3000 g4000 g5000 g6000 7000 g8000 g9000 g100C 1000 2000 q3000 q4000 g5000 6000 7000 g8000 900010000

16

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

