
1

Distributed caching for multiple
databases

K. V. Santhilata,
Post Graduate Research Student,
Department of Informatics,
School of Natural and Mathematical
Sciences,
King's College London, London, U.K

2

Road map

● Introduction

● Problem statement

● Solution

● Example

● Evaluation

● Summary & future work

3

Introduction - Data caching

LAN WAN

Cache

Database
LANWAN Cache Database

WAN

WAN

Cache at client-side Cache at server-side

4

Introduction - Data caching

LAN WAN

Cache

Database
LANWAN Cache Database

WAN

WAN

Cache at client-side Cache at server-side

What to cache?

Cache for how
long?

● Reduced data transfers
● Reduced response time
● Reduced resource

utilization

5

Caching needs among work
groups

How to cache in the dynamic work flow environment among work groups while querying distributed
databases?

6

What to cache?

Cache for how
long?

WHERE TO CACHE?

Solution: Adaptive mobile
co-operative cache

7

Solution: Adaptive mobile
co-operative cache

What to cache?

Cache for how
long?

WHERE TO CACHE?

Influences
cache physical

design

Influences
cache

granule size

Influences
data size

8

Cache design - 1

DQD

Query I

p1 p2

Final result- q I

aggregate

Independent plans:
Sub Plan1 : p1->pr1
Sub Plan2 : p2->pr2

Sub plan1 Sub plan2

pr2pr1

DQD

Query II

Final result – q II

p3 p4

pr3 pr4

p5

pr5

pr45

p45

query I query II

p1 p2 p3 p5p4

p45

Query index

pr1 pr2 pr3 pr4 pr5

Cache unit

q1

Algorithm - cache granule creation

For each new query{

– Fragment query into sub queries

– Cache data as a smallest data object

– Cluster / de-cluster sub queries using association rules

– Store information in the knowledge pattern base for future use

}

9

Cache design - 2

Database 1

Cache
Unit

Database 3

Database 2
Query Index

Cache
Unit

Cache
Unit

Query decomposition

D
is

tr
ib

u
te

d
 q

u
e
ry

p
ro

c
e

s
s
in

g

Data localization

Query Execution

Databases

Query pattern store

Algorithm - cache granule selection at each node

For each new query{

– Top-down search query index for the biggest granule matching

– Update query index for the frequency of updates and location of the query generation

– Estimate data size

– Cluster / de-cluster sub queries using geographical information

– Store information in the knowledge pattern base for future use

}

10

 Mobile co-operative cache
architecture

● Common query index

● Each cache unit stores portable
data objects

● Cache refreshment is a
heuristic based on the sub
query frequency, time span
and data size

● Assesses need for the data on
location basis and performs
cache data transfers

Query interface to
query index

Cache units

Algorithm: cache location selection

For a given time epoch{

For each of the cache node{

● Identify the data usage at the current cache node

● Calculate and estimate the need for the data for other nodes (generate the popularity of the data needed)

● Calculate data transfer costs

● Store information in the knowledge pattern base for future use

}

}

11

Example
Query trace (semantic query)

● Q1_location1: Names of employees working on CAD/CAM project

● Q2_location2: Names of employees working on CAD/CAM project at manager level

● Q3_location1: Find the names of employees who are managing a project

Query trace - SQL

● Q1_location1: SELECT EMP.ENAME FROM EMP, ASG, PROJ WHERE EMP.ENO = ASG.ENO AND ASG.PNO=PROJ.PNO AND PNAME=”CAD/CAM”

● Q2_location2: SELECT EMP.ENAME FROM EMP, ASG, PROJ WHERE EMP.ENO = ASG.ENO AND ASG.PNO=PROJ.PNO AND PNAME=”CAD/CAM”
AND ASG.RESP = “MANAGER”

● Q3_location1: SELECT ENAME FROM EMP,ASG WHERE EMP.ENO = ASG.ENO AND ASG.RESP = “MANAGER”

EMP ASG

Eno

PROJ

PNAME =
CAD/CAM

Final result

12

Cost parameters & Evaluation
● Types of queries

– Partial query hits from the cached data

– Query predictability and data ordering patterns

● Query prioritization & balanced cost functions

– Pro9ling for the resource utilization

– Priority variation for shorter and real-time, time shared
applications

– Data transfer costs

● Response time

– Estimation using entropy measurement

– Queries that need single data source / multiple data sources

● Cache

– Queries from varied local area groups and cache unit
personalization

– Cache training time

13

Pros and Cons

Advantages

– Allows query indexing for faster data object location

– Query indexing proves to be ideal with slow changing work patterns
and data loads

– Handles nested queries easily as well as joins from multiple databases

– Improved cache hit ratio even with random queries

– Sub queries identify the most frequently needed data object, hence
unused data fragment in the cache can be easily evicted

E�ciency is a�ected by

– Dependency on the query optimizer's e<ciency for initial queries

– Complexity of the sub query generation / distribution algorithm

14

Summary & Future work

● Cached query mobility based on restrictions on the data size of the
cache unit

● Query approximation

Picture copied from: https://markarmstrongillustration.files.wordpress.com/2010/07/eggbaskets.jpg

15

16

q1000 q2000 q3000 q4000 q5000 q6000 q7000 q8000 q9000 q10000

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

SubQueries_1

SubQueries_2

SubQueries_3

SubQueries_4

SubQueries_5

q1000 q2000 q3000 q4000 q5000 q6000 q7000 q8000 q9000 q10000

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

SubQueries_1

SubQueries_2

SubQueries_3

SubQueries_4

SubQueries_5

Comparison between random
queries and 30% overlapped

sub queries
Response time

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

