

Polarized (spectral) data

Frédéric Paletou

Observatoire Midi-Pyrénées, UPS & CNRS, Irap

ov-gso.irap.omp.eu

Outline

- Instruments
- Observations : modus operandi
- Getting science-ready data
- Interoperability issues
- General remarks
- Conclusions

Stellar spectropolarimetry

Echelle spectroscopy

- (very) wide spectral covering: 400-1000 nm
- (very) high spectral resolution ~ 65000

Full-Stokes (IQUV) polarimetry capability

mostly circular polarisation data (Stokes V)

Instruments

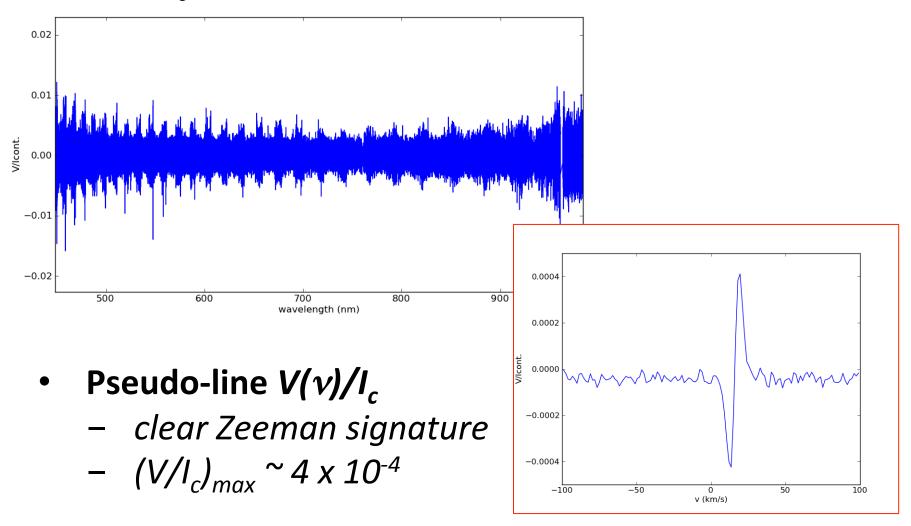
- Espadons@CFHT (ops. since 2005)
- Narval@TBL 2-m telescope (ops. since 2007)
- HarpsPol@3.6-m La Silla (ops. since 2009)
- **–** ...

Modus operandi

No direct measurement of Q, U nor V

- needs to combine, with the help of a polarimeter, different spectra carrying, for instance (I±V)
- and use spatial separation (« analyser ») to record simultaneously both orthogonal states
- (double) beam-exchange technique widely used (Semel et al. 1993)

Main difficulty


- typically V << I
- even worse for linear (Q,U) polarisation

Getting science-ready data (1/3)

- In general V(λ) spectra looks like... noise!?
 - but 100's or 1000's of spectral lines (depending on spectral type) observed simultaneously
 - extract polarisation signals with « line-addition » technique(s) (Semel et al. 2009, Paletou 2012)
- A parenthesis: dimensionless data
 - spectra we are dealing with usually are V(λ)/I_{cont}.
 (i.e., normalized to local continuum)
 - need for VO-tools properly dealing with that (e.g., VOSpec)

Getting science-ready data (2/3)

• $V(\lambda)/I_c$ spectra looks like... noise!?

Getting science-ready data (3/3)

- Polarised pseudo-lines V/I_c vs. velocity
 - needs extra-ressources apart from the observations themselves
 - at least, a list of spectral lines (« mask ») a
 priori (from spectral type) expected in the
 observed spectrum
 - could be more: line depths (from models) and Landé factors (atomic/molecular data) for (line) selection and/or weighting processes

Interoperability issues

- Pseudo-line data: $V/I_c(v)$
 - most interesting ressource to distribute
 - all necessary extra-ressources ought to be properly documented too
 - most used methods (e.g., Least Squares Deconvolution) not (always) fully documented
 - pointed-out recently by Kochukhov et al. (2010)
 - o normalisation of weights?
 - selection of lines vs. depth (model/mask)
- It is timely to propose a standard

Towards more science-ready data...

- From polarised pseudo-lines V/I_c vs. velocity
 - mean line-of-sight magnetic field assuming the Zeeman « weak-field regime »
 - time variability of the polarized signatures
 - magnetism: starspots, activity cycles...
 - asteroseismology : stellar pulsations...
- Zeeman-Doppler Imaging
 - it relies on heavier modelling
 - extra-dimension : mapping B @ photosphere
 - we can't forecast on a schedule for widespread diffusion

General remarks

- IVOA Note on polarization data (February 3, 2010)
 - too much « radioastronomical » at places
 - careful definition of fractional polarisation(s)
 - common measurements: line-of-sight B (also)
 - (Q,U) have to come along with a reference angle otherwise they are ambiguously determined
 - data quality: V/I_c can be **very** small but still usable
 - and other minor comments...
- Key-references about polarimetric standardization
 - Landi Degl'Innocenti et al. (2007)
 - Hamaker & Bregman (1996)

Conclusion

- Not anymore new data, although diffusion at large is relatively recent (and maybe not well-known yet)
- From OV-GSO datacenter
 - **TBLegacy** opened since 2008...
 - PolarBase will soon be opened (Narval and Espadons data, at least)

http://tblegacy.bagn.obs-mip.fr

http://ov-gso.irap.omp.eu