Files	Objects	VO Phot.	SED		Ch	i-2 Fit		Bay	es Analysis		HR Diag.		Save Results		Log	
s and brown dwarf	fs (Change)						File: 0	69 only	confirmed	spec (info) (Change)					
								Model Fi	it Templa	te fit						
								M	odel fit+							
Bestfit	Post fit + rocu	lt.c														
C69-IRAC-001	best nt+ resu	its							Show or	ohe Delate	this fit					
C69-IRAC-002	Object	RA	DEC	D (nc)	Model	Terr	logg	Meta	more	v2	Ma	Ent	AFree	Eabs/East	L half ann	ALbo
C69-IRAC-003	C69-IRAC-001	84 2339859	9 5229902	400.000	BT-Settl	3000	3.5	0	aloha:0	2.988e+2	5 3446-21	3.927e-11	6.435e-12	0.66	1.958e-1	8 105
69-IRAC-004	C69-IRAC-007	84 230545	9.5229902	400.000	BT-Setti	3300	3.5	0	alpha:0	2.500e+2 3.507e+1	2 7036-21	1 798e-11	2 5636-12	0.00	8.9686-2	2 370
69-IRAC-005	C69-IRAC-002	83 962204	9.6491137	400.000	BT-Settl	3300	3.5	0	alpha:0	5.7000+0	1 7190-21	1.1356-11	1.5740-13	0.43	5.6580-2	1.493
69-IRAC-006	C69-IRAC-004	83.8685303	10 0409756	400.000	BT-Settl	3200	4	0	alpha:-0.2	1.040e+1	4.4676-21	2 658e-11	3 1290-13	0.45	1.325e-1	3.470
69-IRAC-007	C69-IRAC-005	83 8555679	9 9132547	0.000	DI-Oota	0200			alpriao.e	1.0400.1	4.4070-21	Not enoug	h points to m	ake a fit	1.0200-1	0.416
69-Sub-004	C69-IRAC-006	83 7191086	9 9305677	400.000	RT-Settl	3000	4	0	alpha:-0.2	2 375e+1	4.670e-21	2 255e-11	1 724e-13	0.29	1 125e-1	2 898
69-Sub-005	C69-IRAC-007	83 516304	9.8700848	400.000	BT-Settl	2800	4	0	alpha:-0.2	5.962e+1	9.047e-21	3 227e-11	5.043e-13	0.40	1.609e-1	4 274
69-X-E-104	C69-Sub-004	83,7948333333333334	9.93513888888888888	0.000	Drocu	2000			upnu. v.z	0.002011		Not enoug	h points to ma	ake a fit	1.00000-1	
9XE-009	C69-Sub-005	83,787916666666666	9.910027777777776	0.000								Not enoug	h points to ma	ake a fit		
9XE-040	C69-X-E-104	83.98154	9.869463	400.000	BT-Settl	3200	4	0	alpha:-0.2	8.021e+2	3.374e-21	1.989e-11	1.284e-13	0.54	9.916e-2	2.543
9XE-064	C69XE-009	83.829475	9.9151335	400.000	Kurucz	4750	3.50	0.00		2.416e+1	2.689e-20	7.898e-10	6.560e-12	0.22	3.938e+0	1.017
9XE-072	C69XE-040	84,209405	9.9066	400.000	BT-Settl	3200	3.5	0	alpha:0	2.022e+0	3.818e-21	2.280e-11	1.646e-12	0.50	1.137e-1	3.663
M003	C69XE-064	83.842427	9.8995644	400.000	BT-Settl	3400	4	0	alpha:-0.2	1.606e+2	3.423e-21	2.716e-11	2.798e-13	0.52	1.354e-1	3.526
MOUS	C69XE-072	84.114436	9.7571574	400.000	BT-Settl	3300	4	0	alpha:0	6.157e+0	2.879e-21	1.906e-11	3.055e-13	0.49	9.507e-2	2.529
MOUG	DM003	83.46541666666666	9.63930555555556	400.000	BT-Settl	3800	4	0	alpha:0	2.117e+1	1.066e-20	1.235e-10	1.555e-12	0.53	6.158e-1	1.617
M007	DM005	83.5083333333333333	9.68505555555554	400.000	BT-Settl	4300	4.5	0	alpha:0	3.738e+0	1.138e-20	2.137e-10	5.557e-12	0.58	1.066e+0	2.941
MUUS	DM006	83.520583333333335	9.95105555555554	400.000	BT-Settl	3600	3.5	0	alpha:0	4.409e+1	5.183e-21	4.916e-11	5.277e-13	0.48	2.451e-1	6.391
M009	DM007	83.52304166666666	9.713	400.000	BT-Settl	4500	3.5	0	alpha:0	3.551e+1	1.309e-20	3.014e-10	6.597e-12	0.62	1.503e+0	4.086
M010	DM008	83.55704166666668	9.4888333333333334	400.000	BT-Settl	4300	4.5	0	alpha:0	1.085e+1	8.370e-21	1.595e-10	4.719e-12	0.60	7.952e-1	2.223
013	DM009	83.63670833333332	9.991916666666667	400.000	BT-Settl	4200	4.5	0	alpha:0	4.731e+0	6.241e-21	1.061e-10	1.572e-12	0.58	5.292e-1	1,401
1014	DUOLO	00.0405	A 1000000000000	400.000	DTC+H	2200		0	alahar 0.0	0.705+14	E 747. 04	0 450- 44	0 705 - 40	0.47	4 700- 4	1.402

~200 regular users, cited in ~ 50 papers

~200 regular users, cited in ~ 50 papers

~200 regular users, cited in ~ 50 papers

itars and		VO Phot	SED	Chi-2 Fit	Bayes An	nalysis H	IR Diag. Sav	e Results Log	Help	Logout
	brown dwarfs (Ch	ange)			File: C69 only	y confirmed s	spec (info) (Change	e)		
					HR Dia	gram				
	Modele		Objects							
Plot	Mark All Linmark All	Show Chow All Ch	Objects			1	X	£ 2000 -5000	Elin: S Diat	
1	BT-Sett	Obj	Model teff logL	t	m		Ŷ	€ -31	Flip:	
Ø	t:0.00100	C69-IRAC-0	01 BT-Settl 3000 -0.70	31 [4]	[4]	12.5				
0	BT-Settl	S C69-IRAC-0	02 BT-Settl 3300 -1.04	73 0.0043	0.2665					
	RT.Settl	C69-IRAC-0	03 BT-Settl 3300 -1.24	74 0.0078	0.2506					
9	t:0.00300	C69-IRAC-0	04 BT-Settl 3200 -0.87	76 0.0019	0.2114					
	BT-Sett	C69-IRAC-0	00 BI-Setti 3000 -0.94	90 [4]	[4]	0.60-				
	t:0.00400	C69-X-F-10	BT-Settl 3200 -1.00	16 0.0025	0.2132		-			
۷ .	BT-Sett	C69XE-009	siess 4750 0.595	3 0.0050	1.8869					
122	BT-Settl	✓ C69XE-040	BT-Settl 3200 -0.94-	2 0.0020	0.2135		- 1 /			
0	t:0.00600	C69XE-064	BT-Settl 3400 -0.86	82 0.0040	0.3500	0.00-	100	- 12		
	BT-Settl	C69XE-072	BT-Settl 3300 -1.02	19 0.0040	0.2690		1.0	Let!		
	t:0.00700	DM003	BT-Settl 3800 -0.21	06 0.0030	0.9006			XXV	•	
0	t0.00800	DM005	BT-Sett 3600 0.021	6 0.0053	0.5854			· Val	•	
-	BT-Sett	DM003	BT-Settl 4500 0.176	9 0.0106 [1]	1.3899	-0.60-	100	1 MAN		
N	t:0.00900	DM008	BT-Settl 4300 -0.09	6 0.0080	1.2984	3		- NV		
0	BT-Settl	✓ DM009	BT-Settl 4200 -0.27	34 0.0102	1.1000	2		1/1/		
	1:0.01000	✓ DM010	BT-Settl 3200 -0.76-	1 0.0011	0.2045	12		P 13		
9	t:0.02000	DM013	BT-Settl 3800 -0.53	01 0.0085	0.8116	5 -1.20-		11%.	V V	
-	BT-Settl	DM014	BT-Settl 3800 -0.42	35 0.0061	0.8504			VI	XIV IZ	
0	t:0.03000	DM015	BT-Settl 3600 -0.66	02 0.0060	0.5723			11.	VILLE	
0	BT-Settl	DM016	BT-Sett 4100 0.040	0.0029	1 2203	-1-84-		XI	1 JAN	
	10.04000	DM017	BT-Settl 4000 -0.14	10 0.0043	1.0916	-1100			V MAN	
۷ ا	t0.05000	DM019	BT-Settl 3600 -0.57	4 0.0048	0.5941				MARI	
-	BT-Sett	DM021	BT-Settl 3800 -0.25	17 0.0038	0.8998				1/ MARIE	
0	t:0.06000	✓ DM022	BT-Settl 3700 -0.58	18 0.0070	0.7003	-2.40-			1 VIIII	
	BT-Settl	✓ DM023	BT-Settl 3600 -0.65	33 0.0059	0.5725	200000			/ UNI ·	
	t:0.07000	S DM024	siess 4750 0.136	8 0.0087	1.3998	1 1			1111	

~200 regular users, cited in ~ 50 papers

Cases that benefit from the new VOSA: Late M-type members of Cha I and TWA

- ✓ Spectral types (optical) M6 M9 (dust settling)
- ✓ Well populated SEDs
- ✓ Optical + NIR spec avaiable

VOSA results of the sample

- ✓ Good fits for most of the objects
- ✓ Significant parameters

Bayo et al. (2014b subm.)

VOSA makes easy to compare the impact of dust treatment in determined masses -> IMF

Non-realistic masses with the limiting cases

Bayo et al. (2014b subm.)

VOSA makes easy to compare the impact of dust treatment in determined masses -> IMF

Non-realistic masses with the limiting cases

Bayo et al. (2014b subm.)

Our determinations favored when reaching higher level of detail

Cases that benefit from (& not only) the new VOSA: A much COOLER object

• Combined press-release: this is how our cool neighbors formed?

Astronomers including Niall Deacon of the Max Planck Institute for Astronomy (MPIA) captured an image of an unusual free-floating planet. As the object has no host star, it can be observed and examined much easier than planets orbiting stars, promising insight into the details of planetary atmospheres. Can an object with as low a mass as this have formed directly, in the same way that stars form? Independent observations by a group led by MPIA's Viki Joergens suggest that this is the case: They discovered that a similar but much younger free-floating object is drawing material from its surrounding just like a young star. This has important consequences for star formation models in general.

Cases that benefit from (& not only) the new VOSA: A much COOLER object

• Combined press-release: this is how our cool neighbors formed?

 Every WISE source in a 2deg radius (~5.8 pc) with photospheric colors

- Every WISE source in a 2deg radius (~5.8 pc) with photospheric colors
- Build SEDs with VOSA, fit models -> determine physical parameters

- Every WISE source in a 2deg radius (~5.8 pc) with photospheric colors
- Build SEDs with VOSA, fit models -> determine physical parameters
- Select candidates: different spatial distribution?

 Every WISE source in a 2deg radius (~5.8 pc) with photospheric colors -75:35:03• Build SEDs with VOSA, fit models -> determine physical -76:55:10parameters Select candidates: different -78:08:38spatial distribution? Confirm candidates: NTT/ -79:13:05EFOSC2 data (preliminary) -> 11:52:26 11:23:50 11:00:11 10:40:41

65% success

Cases that benefit from the new VOSA: Disk evolution in low-mass stars

les Ob	ojects VO Pho	t. SED	Chi-2 Fit	Bayes Analy	sis HR Diag.	Save Results L	og	Help	Log
and brown d	warfs (Change)			No f	ile selected (Selec	t/upload a file)			
ι	Upload your ov	vn data file (ma	ax size=500	Kb) (Create a sing	le object data file			
t	convert an original file in ascii (csv) or votable to VOSA input format) File to upload: Browse No file selected.				create a single format. RA and DEC an	object data file with e compulsory.	the adequ	uate	
	Description:			RA:	(deg)				
	Fluxes (erg/cm2/s/A)		2/s/A)		DEC:	(deg)			
	File type:	Fluxes (Jy)			Obj.Name:				
	and and	Magnitudes			Description:				
	Upload				Create				
				Your file	s				
Folder	Filename		Des	crip	-	Last Used	Obj.type	N.Obj.	
Default folde	r TWA_		TWA	۱		2013-11-06 09:34:24	star	25	Select
	ECH_(ECH	ł		2012-10-01 20:45:38	star	27	Select
	ARG_I		ARG	}		2012-09-22 23:24:24	star	60	Select
	OCT_I		OCT	•		2012-09-22 22:33:44	star	17	Select
	CAR_		CAR	{		2012-09-22 22:33:04	star	37	Select
	BPI_j		BPI			2012-09-22 22:32:12	star	54	Select
		ABD				2012-09-22 22:30:22	star	93	Select
	ABD_j		ABD	,		EUTE OU EE EE.OU.EE	oun		
	ABD_I COL_I		COL			2012-09-22 22:22:19	star	58	Select

Cases that benefit from the new VOSA: Disk evolution in low-mass stars

The happy endings...

- Data related:
 - CDS wonders vs pain of getting, for example, IOP tables
 - The "sasmirala" atlas
- Tool related (development)
 - The final AVO science demo
 - The birth of VOSA (and its continuous development)
 - The DUNES-VO tool

The DUNES prep. work

	DUNES: DUst around NEarby Stars A Herschel Key Programme
St Regard	
You are not logged in.	Cold Disks around Nearby Stars. A Search for Edgeworth-Kuiper Belt Analogues
Navigation	
• Home	Debris ir system's
The Proposal	counter, a start
Consortium Members	prevale System. survey for faint, cold debris disks (EKB)
Announcements	ways (Around 133 (up to 250) stars Volume limited sample us
Documents	were of Around 155 (up to 250) stars. Volume-immed sampled too pm
Public Outreach	integra (distances 25 pc)
 Contact 	belt an a sind spans a broad tric. De te ette en se
Contact	and A-t. Detecting extremely faint excesses requires a very stremely faint
User Login	to 2 sc detailed knowledge of the photospheric level ->
Username: *	Our su giant i fundamental parameters
Password: *	systems formation in disks around young stars.
Log in	
	HIP10138 HIP101955 HIP101997 HIP103389 HIP104214 HIP104217 HIP105312

The DUNES prep. work

VO Discovery Tool

Developed in the framework of the DUNES and GASPS projects, this Virtual Observatory tool allows accessing, visualizing, filtering and retrieving relevant information already available in astronomical archives and services.

List of object coordinates (one line each) Format allowed: 350.123456 -17.33333 20 54 05.689 37 01 17.38 10:12:45.3 -45:17:50 Padius: 2

arcsec

The DUNES prep. work

Developed in the framework of the DUNES and GASPS projects, this Virtu
visualizing, filtering and retrieving relevant information already available in

Fil	Iters:		Teff , logg , [Fe/H] , E(B-V)	Explore Vi	zier:	Teff	📄 logg	□ [M/H]	📄 E(B-V)
• 1	Exclude CCDM sources:		Vsini	Glebok	i (2000))	CReiners - Sch	mitt (2003)	Explore vizier
	CCDM astrometric binaries.	orbit.	Period	Explore	e vizier				
	 CCDM sources with rho < All CCDM sources. 	arcset	Spec. Type	Explore	e vizier				
•	Exclude stars in SB9		Age	Explore	e vizier				
14	Exclude stars in Catalogue of Eclip	ude stars in Catalogue of Eclipsing Binari ude stars in WDS		Explore vizier					
-			Proper Motion	🗆 Hippar	cos		Tycho-2		Explore vizier
Se	rvices:		Space Velocity	Explore	e vizier				
-	uvbyß Strömgren photometry	Hauck - Herminik	Parallax	🗆 Hippar	cos Radius	Explore	vizier		
	JHK photometry				Radius	5: 5	⊖arcmin ⊙arcsec		
	IRAS photometry	Point Source Cat	alogue		Radius	5: 20	⊖arcmin ●arcsec		
		Faint Source Cat	atalogue		Radius	20	⊖arcmin ⊙arcsec		
	Tycho-2 photometry		The Tycho-2 Catalogue of the 2.5 Million Brightes			s: 5	⊖arcmin earcsec		

OBJ	HIP
HIP 171	171

Photometry	,	OBJ HIP 171	HIP 171				
Source	distance (arcmin)	Teff					Luyt Roe:
Strömgren (II/215)							Ag
Strömgren (II/215)		Catalo	g	Catalog	a	Distan	
Strömgren		Name	ອັ	Code		(deg	6
Strömgren (II/215)		Thevenin,	1998	III/193		0.0000	
2MASS (II/246)	0.01517	Prugniel+ 2	2007	11/251		0.0000	HOI
2MASS (II/246)	0.01517	logg					Cas
2MASS (II/246)	0.01517	logg					-
IRAS/PSC (II/125)							Sp
IRAS/PSC (II/125)		Catalo	g	Catalog	C C	Distanc	-
IRAS/PSC		Name	•	Code		(deg)	
(IV125) IRAS/PSC		Thevenin,	1998	III/193	(0.00000	VIII
(11/125)		Prugniel+	2007	III/251	(0.00000	XHI
IRAS/FSC (II/156A)							-
IRAS/FSC (II/156A)		[M/H]					Pr
IRAS/FSC							
IRAS/FSC		Catal	og	Cata	log	Dist	
(II/156A)		Nam	ie	Coc	le	(di	Lu
Tycho-2 (1/259 /tyc2)		Thevenin.	1998	111/19	93	0.00	Ba
Tycho-2 (1/259		Prugniel+	2007	111/29	51	0.00	Bal
/tyc2)		E(B_V)					Pa
NStED		с(Б-V))					
NStED							
NStED		Catalo	g Name	, C	atalog		
NStED		CDIDCC			Code		ESA
NStED		CPIRSS			V2/0		Kha
NStED		Casagrand	ie+, 201	1 J/A+/	A/530/A	138	P
NStED		Vsini					D
NStED		VSIIII					
NStED							
NStED		Catal	oa	Catal	oa	Dista	
NStED		Nam		Cod	6	(de	XH
Spitzer/FEPS		Glebocki	2005	111/2/	14	0.00	Та
Spitzer/FEPS		Glebocki+	2005	11/24	14	0.00	20
Spitzer/FEPS		Glebocki+	2005	11/24	14	0.00	Та
Spitzer/FEPS		Glebocki	2005	11/24	14	0.00	20
Spitzer/FEPS		Glebocki+	2005	11/24	14	0.00	20
opicentero		Hoffleit+ 1	991	11/24 V/5/	0	0.00	20
		Herrero+ 2	012	.1/0+0/53	7/4147	0.000	200
		10110104, 2	012	0/141100		0.000	

Sptype

Catalog Name	Catalog Code	Distance (deg)	Sptype	Sptype error	NomCol	Units	UCD
Luyten 1979	I/87B	0.0007	G1		Sp		src.spType
Roeser+, 1988	I/146	0.000536	G0		Sp		src.spType

ge

	Catalog Name	Catalog Code	Distance (deg)	Age	Age error	NomCol	Units	UCD
j	Holmberg+, 2009	V/130	0.00038	14.7		age	Gyr	time.age
1	XHIP	V/137D	0.002928	14.7		age	Gyr	time.age
	Casagrande+ 2011	.I/A+A/530/A138	0.00038	7.24		ageEP	Gyr	time are

bace Velocity

	Catalog Name	Catalog Code	Distance (deg)	SpaceV	SpaceV error	NomCol	Units	UCD
	XHIP	V/137D	0.002928	74.4		vT	km/s	phys.veloc
):	XHIP	V/137D	0.002928	82.8		UVW	km/s	phys.veloc

roper Motion

Catalog Name	Catalog Code	Distance (deg)	ProperM	ProperM error	NomCol	Units	UCD
Luyten 1979	I/87B	0.0007	1.295		pm	arcsec/yr	pos.pm
Bakos+ 2002	V279	0.000215	1.29		pm	arcsec/yr	pos.pm
Bakaas 2002	1/270	0.000015	1 205		mul	araaahur	

arallax

۵	Catalog Name	Catalog Code	Distance (deg)	Parallax	Parallax error	NomCol	Units	UCD
	Turon+ 1993	V196	0.000577	86	4	Plx	mas	pos.parallax.trig
1	ESA 1997	V239	0.002928	80.63	3.03	Plx	mas	pos.parallax.trig
	Kharchenko+	1/2908	0.002028	23.02	2.01	Div	mae	noe parallay tria
			••					

olometric Luminosity

Ontology	Dista	Ca	talog	Catalog	Distance	BolomLumin	BolomLumin	NomCol	Units	UCD
Catalog	Dista	ING	ame	Code	(aeg)		error			
Code	(de	XHIP		V/137D	0.002928	0.67		Lum	Lsun	phys.luminosity
III/244	0.00	Taked 2007	la+,	J/PASJ /59/335	0.002925	-0.16		logL	[solLum]	phys.luminosity
111/244	0.00	Taked	9+	J/PASJ						
111/244	0.00	2007		/59/335	0.002925	-0.164		logL2	[solLum]	phys.luminosity
111/244	0.00	0 Biazzo+, 0 2007		J/AN/328/938	0.000005	-0.22	0.03	logL	[10-7W]	phys.luminosity
111/244	0.00				0.000005					
V/50	0.000			WATNACH	0.004	J 00.0300	3.0300			23.00101104.010
J/A+A/537/A147	0.000	2004								
J/PASJ/57/13	0.0000	005	3		vsi	ni km/s	phys.veloc.rotat			

· For NStED and

Takeda+, 2005

The happy endings...

- Data related:
 - CDS wonders vs pain of getting, for example, IOP tables
 - The "sasmirala" atlas
- Tool related (development)
 - The final AVO science demo
 - The birth of VOSA (and its continuous development)
 - The DUNES-VO tool
- Tool related (exploitation)
 - High proper motion object characterization (UCSD, HSD) , galaxy morphology,

What do these cases have in common?

The "to be continued" stories...

- Multiple epochs of spectra of multiple objects (maybe CASSIS? and the new data-link options?): only specific wl range, systematic line characterization (EW, FWHM, etc) ...
- What we hear in science conferences when talking about the VO:
 - "Didn't that started 10 years ago and it is still not working?" (that I got in a job interview)
 - "Where can I even find the list of software? where do I start?" (download the VO)
- The most common comment from the International Workshop on Spectral Stellar Libraries (IWSSL13):
 - "Why should I go through the effort of making my library VO-compliant?"
 - "What is really useful in the VO for spectra?"
- More synth. models in the VO (example going on: all the phoenix "family", connect with the successful cases)

My two cents?

• Maybe include a bit more of astronomer's presentations of the kind:

"This is my problem and this is what I cannot do in the VO"

- Important to choose from the right crowd that can "speak the language" (or are willing to try, but there are quite a few! :))
- Try to keep up with "outreach" through schools, it does work!

The VOSA team.

Continue to VOSA

• How did you know about VOSA and start to use it?

Thank you for your attention!