
Fig. 1

Fig. 2

1. Flexible accessData using Datalink

(cf. Fig. 1)

Markus Demleitner
msdemlei@ari.uni-heidelberg.de

(cf. Fig. 2)

This is shameless advertising for using a simple, proven method to implement “accessData”
(AD).

TL;DR: All metadata unambiguosly declared in a VOTable. Design from the client towards the
server. Don’t unnecessarily restrict scope.

2. Principles

• AD services are normal datalink services (i.e., metadata in VOTable params plus model
annotation)

• Parameter types are what’s given by VOTable, strings+syntax discouraged

• Asymptotically total metadata definition

• Operators are free to expose whatever parameters are useful for their data

• Standard parameters are extension-safely defined through three-factor semantics

• Deployments now should not need to be touched on updates

1

3. Three-factor semantics

In order to allow clients to naively use simple names for doing cutouts (or whatever) on well-

known quantities, there are reserved name/ucd/unit combinations, e.g.:

Name UCD Unit

ID meta.id;meta.main (none)

DEC MIN param.min;pos.eq.dec deg

DEC MAX param.max;pos.eq.dec deg

RA * param.*;pos.eq.ra deg

LAT * param.*;(special) deg

LON * param.*;(special) deg

LAMBDA * param.*;em.wl m

FORMAT meta.code.mime (none)

SPECRP * param.*;spect.resolution (empty)

FLUXCALIB phot.calib (none)

PIX (n) * param.*;pos.pixel.ax(n) pixel

KIND meta.code (none)

Your contribution here

A client only interested in doing cutouts in ICRS would simply check if the three factors in the
metadata match whatever is in its list of standard semantics and discard the service if they don’t.
It can use plain key-value pairs afterwards with impunity otherwise. The three factors ensure that
names of today’s custom parameters can be used in tomorrow’s standards without clashes.

As you can see, I’m suggesting some additional UCDs. I’m not convinced the “param.*” actually
catches the semantics. It should be something like a “generic limit”; “stat.max” pretty certainly
doesn’t fit here.

We’ll need a bit more experience if clients can actually work out the interfaces from this. From
the SPLAT experience, we’d say they mostly can, but more evidence is needed.

4. What’s so great about it?

• No ad-hoc syntax (in the standard)

• Rich interfaces (including limits, pre-filled fields) easily implementable even for unknown
physics

• Model-neutral (but standard DM annotation possible as DMs become available)

• Straightforward discovery and use of known physics

• Minimal spec effort (could be a chapter of datalink)

• Existing integration of STC with a clear evolution perspective

• Proven record on client and server of a similar technique in SSAP/Splat

2



5. Counterarguments

• Async services (this probably is just a UWS application, but since I’ve not implemented that
yet, I won’t make promises)

• Unwieldy with funny coordinate systems (e.g., poles of spherical coordinates): VAL/SIZE
instead of MIN/MAX?

• You tell me. . .

6. Services doing this

In case you want to see metadata for datasets:

• CALIFA cube1

• 2D slit spectrum2

• spectrum with cutout, recalibration, and such3

• completely virtual spectrum4

• Accessing individual Echelle orders5

Set up your own service using DaCHS: Docs6 Think that’s ugly? Well:
Clients, clients, clients!

1 http://dc.g-vo.org/califa/q/dl/dlmeta?ID=ivo%3A%2F%2Forg.gavo.dc%2F%7E%3Fcalifa%2Fdata%2FV500%2Freduced
2 http://dc.g-vo.org/mlqso/q/d/dlmeta?ID=ivo%3A%2F%2Forg.gavo.dc%2F%7E%3Fmlqso%2Fdata%2Fslits%2FQ0142 data.fits
3 http://dc.zah.uni-heidelberg.de/flashheros/q/sdl/dlmeta?ID=ivo://org.gavo.dc/~

?flashheros/data/ls95/blue/f1938.mt
4 http://dc.zah.uni-heidelberg.de/c8spect/q/rvdl/dlmeta?ID=ivo://org.gavo.dc/~

?c8spect/rpbp/1152923226888832682
5 http://dc.zah.uni-heidelberg.de/flashheros/q/echdl/dlmeta?ID=ivo://org.gavo.dc/~

?flashheros/data raw/ls97/blue/n1544.mt
6 http://docs.g-vo.org/DaCHS/ref.html#datalink-cores

3


