Converting ADQL's Grammar
from BNF to PEG

Walter Landry

What?

* PEG (Parsing Expression Grammar), like
BNF (Backus-Naur Form), is another
way of specifying grammars

* It Is naturally aligned with how recursive
descent parsers work

 Unlike BNF, it is never ambiguous

But

* |n practice, this means debugging left
recursion problems rather than shift-reduce
problems

e Tool support is different
e Many libraries (PEGTL, Boost::Spirit, PEG]js)
 But not the old familiar tools (e.g yacc,

bison, antir)

Translating

* |n principle, there are BNF grammars that
have no PEG equivalent.

* In practice, there is always an equivalent.

 But this means that there is no automatically
convert a BNF grammar into PEG.

Already done?

e | sort of already created a PEG grammar
for ADQL when | wrote my ADQL parser
library

e | used boost::spirit, which uses operator
overloading to emulate a PEG DSL in C++.

libadq|

e https://github.com/Caltech-IPAC/libadq|
e Comes with 195 tests
* The generated parser is fast
e Compiling it is sloooooooow

 and uses lots of memory

* | had to split up the long list of keywords

to get the memory use under a GB.

 Template errors can be intimidating.

libadql vs BNF

2639 lines of code according to cloc

1/3 is the grammar

2/3 are all of the various types for the AST
Does not have a full AST. Just the parts that
| cared about.

In comparison, the BNF has 512

non-blank lines.

Only Mostly Done

e The DSL is close to PEG, but not the same
e e.g. prefix '+' rather than postfix '+

 Proper backtracking is finicky, requiring
some hacks.

 Loading the code properly into an AST
can reguire even more hacks.

 About 2 days of work to convert.

Spaces Cause Trouble

* The BNF Is ambiguous about when spaces
are part of the grammar.

[sign] <unsignhed 1nteger> Prohibited
ACOS '(' <numeric value expression> ')' Allowed
<search condition> OR <boolean term> Required

 But it is all implicit. So | needed to discern
the intent of the rule. The tests were
really helpful.

Reserved Keywords Aren't

e The BNF defines a large number of reserved
words, but never uses them in the grammar.

* | ended up making reserved words illegal
for identifiers

e | also reserved TAP UPLOAD. Not sure if |
really needed to.

Fixing Left Recursion
Is Usually Easy

* rules like
a | (a b+)
become
(a b+) | a

* recursive joins was the only tough one

Missing PEG Capabilities?
e Case insensitive match
e Expectation Parser

* The entire parse fails if a rule does not
match. Not allowed to backtrack and
try something else.

e Useful if, for example, you are in the
middle of parsing a function and do not
find the closing braces.

* Really useful for comprehensible errors

Results

e Fully (?) working PEG grammar

583 non-blank lines

e Still rough. Could be simplified further.

e | fed it into PEGjs and it passed all of my
195 tests.

 Retains some quirks from my
iImplementation: SQL 99 arrays, hard coded
reference frames, limited geometry support,
CAST operator.

Useless Rules?

e Some rules complicate the grammar without
significant benefit.

* No one (?) actually evaluates the queries.
We only rewrite them for our back ends.

e For example, there is a special rule for
UDF's, but the regular function syntax
already covers them.

No Math?

e Similarly, checking airity on math functions
can be done by the back end.

e The ADQL spec can require the existence
of these functions, but it does not have to
be in the grammar.

 Implementations might want to check it
In the grammar to give better error
messages, but it would not be required.

