
Converting ADQL's Grammar
from BNF to PEG

Walter Landry

What?
• PEG (Parsing Expression Grammar), like

 BNF (Backus-Naur Form), is another

 way of specifying grammars

• It is naturally aligned with how recursive

 descent parsers work

• Unlike BNF, it is never ambiguous

But
• In practice, this means debugging left

 recursion problems rather than shift-reduce

 problems

• Tool support is different

 • Many libraries (PEGTL, Boost::Spirit, PEGjs)

 • But not the old familiar tools (e.g yacc,

 bison, antlr)

Translating
• In principle, there are BNF grammars that

 have no PEG equivalent.

• In practice, there is always an equivalent.

• But this means that there is no automatically

 convert a BNF grammar into PEG.

Already done?
• I sort of already created a PEG grammar

 for ADQL when I wrote my ADQL parser

 library

• I used boost::spirit, which uses operator

 overloading to emulate a PEG DSL in C++.

libadql
• https://github.com/Caltech-IPAC/libadql

• Comes with 195 tests

• The generated parser is fast

• Compiling it is sloooooooow

 • and uses lots of memory

 • I had to split up the long list of keywords

 to get the memory use under a GB.

• Template errors can be intimidating.

libadql vs BNF
• 2639 lines of code according to cloc

• 1/3 is the grammar

• 2/3 are all of the various types for the AST

• Does not have a full AST. Just the parts that

 I cared about.

• In comparison, the BNF has 512

 non-blank lines.

Only Mostly Done
• The DSL is close to PEG, but not the same

 • e.g. prefix '+' rather than postfix '+'

• Proper backtracking is finicky, requiring

 some hacks.

• Loading the code properly into an AST

 can require even more hacks.

• About 2 days of work to convert.

Spaces Cause Trouble
• The BNF is ambiguous about when spaces

 are part of the grammar.
 [sign] <unsigned_integer> Prohibited

 ACOS '(' <numeric_value_expression> ')' Allowed

 <search_condition> OR <boolean_term> Required

• But it is all implicit. So I needed to discern

 the intent of the rule. The tests were

 really helpful.

Reserved Keywords Aren't
• The BNF defines a large number of reserved

 words, but never uses them in the grammar.

• I ended up making reserved words illegal

 for identifiers

• I also reserved TAP_UPLOAD. Not sure if I

 really needed to.

Fixing Left Recursion
is Usually Easy

• rules like

 a | (a b+)

 become

 (a b+) | a

• recursive joins was the only tough one

Missing PEG Capabilities?
• Case insensitive match

• Expectation Parser

 • The entire parse fails if a rule does not

 match. Not allowed to backtrack and

 try something else.

 • Useful if, for example, you are in the

 middle of parsing a function and do not

 find the closing braces.

 • Really useful for comprehensible errors

Results
• Fully (?) working PEG grammar

• 583 non-blank lines

• Still rough. Could be simplified further.

• I fed it into PEGjs and it passed all of my

 195 tests.

• Retains some quirks from my

 implementation: SQL 99 arrays, hard coded

 reference frames, limited geometry support,

 CAST operator.

Useless Rules?
• Some rules complicate the grammar without

 significant benefit.

• No one (?) actually evaluates the queries.

 We only rewrite them for our back ends.

• For example, there is a special rule for

 UDF's, but the regular function syntax

 already covers them.

No Math?
• Similarly, checking airity on math functions

 can be done by the back end.

• The ADQL spec can require the existence

 of these functions, but it does not have to

 be in the grammar.

• Implementations might want to check it

 in the grammar to give better error

 messages, but it would not be required.

