"
{7/
VY ™\

STSCI | science wstmure

JupyterHub on AWS

Tom Donaldson, on behalf of #

Christian Mesh, Mike Fox, Iva Momcheva,
Josh Peek, Arfon Smith

Q)
i"%
|

¥4) Highlights of what we’re building
/’\

* Cloud-hosted copy of all HST public data
* (Live) JupyterLab environment with some compute/storage
* Collection of Docker containers installed with common tools

v. A
o4
N

Common technologies, many implementers

SciServer
Jupyterl ab
docker s
A lt}ll\('r)A/é/\Cg

——jJupyterhub
) p:/ - .

User Databases User Files
kubernetes

STScI | scince smmore

STSCI | SCince wsrmore

¥4) Amazon Web Services: Public Dataset Program

TN

©® © ® @ Large Datasets Repository | P x

&

C' 1Y @ Secure https://aws.amazon.com/public-datasets/

aws Contact sales
N—"

RELATED LINKS
Big Data on AWS
Open Data on AWS

AWS Programs for Research and
Education

Products v Solutions Pricing More ~

* © @00

AWS Public Datasets

AWS hosts a variety of public datasets that anyone can access for free.

Previously, large datasets such as satellite imagery or genomic data have required hours or days to locate,
download, customize, and analyze. When data is made publicly available on AWS, anyone can analyze any
volume of data without needing to download or store it themselves. These datasets can be analyzed using
AWS compute and data analytics products, including Amazon EC2, Amazon Athena, AWS Lambda and
Amazon EMR.

Available Public Datasets on AWS

Geospatial and Environmental Datasets
Learn more about working with geospatial data on AWS at Earth on AWS.

« Landsat on AWS: An ongoing collection of satellite imagery of all land on Earth produced by the Landsat 8 satellite.

Sentinel-2 on AWS: An ongoing collection of satellite imagery of all land on Earth produced by the Sentinel-2 satellite.

GOES on AWS: GOES provides continuous weather imagery and monitoring of meteorological and space environment data across
North America.

SpaceNet on AWS: A corpus of commercial satellite imagery and labeled training data to foster innovation in the development of
computer vision algorithms.

OpenStreetMap on AWS: OSM is a free, editable map of the world, created and maintained by volunteers. Regular OSM data archives
are made available in Amazon S3.

MODIS on AWS: Select products from the Moderate Resolution Imaging Spectr i (MODIS)
Survey and NASA.

by the U.S. Geological

Sign up now]

Arfon

English ~ My Account ~ Sign In to the Console

~120TB public HST data
for ACS, COS, STIS,
WFC3, FGS

Range of high-impact
datasets

Hosted in cloud - ‘highly
available’

Enable new types of data
analyses

Hosted at no cost to
STSclI/NASA

STSCI | SCince wsrmore

®
i!4
|

¥4) Amazon Web Services: Public Dataset Program
/\

» Data is hosted in an S3 region (for ‘free’)
» Conditions of inclusion in program: make the data useful:
 An AMI with a demonstration of how to use the public dataset
must be provided
* AWS recover costs by making access to the data free from
AWS services (EC2), making it cost effective for researchers
to buy AWS computing time
* Enables new types of analyses

0
A4 JupyterLab environment

o
«

® /[Pro-Alpha Jupyter Lab Der X

C [} 127.0.0.1:8888/lab

File

Files

Commands

Notebook _Editor Terminal Console

CONSOLE

Clear Cells

Execute Cell Shift-Enter
Interrupt Kerel

New Julia 0.4.5 console

New Python 2 console

New Python 3 console

New R console

Switch Kemel

EDITOR

Close all files

Line Numbers

Line Wrap

Match Brackets

Save File

Vim Mode

Vim Mode Off

FILE OPERATIONS

Close All ctri-shift-Q
Close Document crl-Q
New Notebook Ctri-Shift-N
New Text File ctr-0
Revert Document

Save Document cmd-s
HELP

About JupyterLab

FAQ

IPython Reference

JupyterLab Launcher

Markdown Reference

Matplotiib Reference

Notebook Tutorial

Numpy Reference

Pandas Reference

Python Reference

Scipy Lecture Notes

Scipy Reference

SymPy Reference

IMAGE WIDGET

Reset Zoom

Zoom In

Zoom Out

tx Wl Terminal 1 % |]Python 3 (1) X
-> Introduction and overview of IPython's features.

?
%quickref -> Quick reference.

object?
details.

In (1):

In [2]:

loading eeg /Users/fperez/usr/conda/ib/python3.5/site-packages/mat

-> Python's own help systen.
-> Details about 'object’, use 'object??' for extra

smatplotlib inline

from numpy. random import beta
import matplotlib.pyplot as plt
plt.style.use('bmh')

def plot_beta_hist(a, b):
plt.hist(beta(a, b, size=10000), histtyp
bins=25, alpha=0.8, normed=True)

stepfilled”,
return

plot_beta_hist(10, 10)

plot_beta_hist(4, 12)

plot_beta_hist(50, 12)

plot_beta_hist(6, 55)

%run ~/Downloads/mri_with_eeg.py

plotlib/mpl-data/sample_data/eeg.dat

MR density

-10-05 00 05 10

B
time (s)

A O OO & 0
Launcher x | mri_with_eeg.py %
1 #!/usr/bin/env python
2
3
4 This now uses the imshow command instead of pcolor which xis much
5 fasters
M
7 from _future__ import division, print_function
8
9 import numpy as np
10
11 from matplotlib.pyplot import %
12 from matplotlib.collections import LineCollection
13 import matplotlib.cbook as cbook
14 # T use if 1 to break up the different regions of code visually
15
16 if 1: # load the data
17 # data are 256x256 16 bit integers
18 dfile = cbook.get_sample_data('s1045.ima.gz")
19 im = np.fromstring(dfile.read(), np.uint16).astype(float)
20 im.shape = 256, 256
21
22 if 1: # plot the MRI in pcolor
23 subplot(221)
24 imshow(im, cmap=cm.gray)
25 axis('off')
26
27 if 1: # plot the histogram of MRI intensity
28 subplot(222)
29 im = np.ravel(im)
30 im = im(np.nonzero(im)] # ignore the background
31 im = im/(2.0%x15) # normalize
32 hist(im, 100)
33 xticks([-1, -.5, 0, .5, 11)
34 yticks([1)
35 xlabel('intensity')
36 ylabel('MRI density')
37
38 if 1: # plot the EEG
39 # load the data
40
41 numSamples, numRows = 800, 4
2 eegfile = cbook.get_sample_data('eeg.dat', asfileobj=False)
43 print('loading eeg %s' % eegfile)
44 data = np. fromstring(open(eegfile, 'rb').read(), float)
45 data.shape = numSamples, numRows
46 t = 10.0 * (,» dtype=float)
47 ticklocs = []
48 ax = subplot(212)
49 xlim(0, 10)
50 xticks(np.arange(10))
51 dnin = data.min()
52 dmax = data.max()
53 dr = (dmax - dmin)x8.7 # Crowd them a bit.
54 ¥0 = dmin
55 y1 = (numRows - 1) * dr + dmax
56 ylin(yo, y1)
57
58 segs = (]
59 for i in range(numRows):
60

Buuny

* Interactive computing
environment

Where most development
work is going from the
core Jupyter team

Works with community
tools (e.qg. Astropy

STSCI | SCince wsrmore

©)
Containers for different environments

- Jupyter o B0 &

|
HEE
HEEEE
Docker container Docker container Docker container
HSTCal/Astropy JWST Spectools/Astropy HSTCal/Grism tools

HST Public Datasets > Compute (AWS EC2) do C k er

Shared file system (AWS EFS
e ‘famazon - jupyterhub
© webservices™ N’

STScl

SPAC SCOI
ST&I ‘ SEIEI\ECTEEII.IEISTHEEE

Technical details:

TN

* JupyterHub, a multi-user Hub, spawns, manages, and proxies multiple

instances of the single-user Jupyter notebook server.

JupyterLab frontend provides notebook server, file management, and a

terminal shell

Using Docker to containerize science environments, allows

a verified computing environment to be instantiated rapidly.

Jupyter

Containers are versioned providing precise reproducibility ” S —

of the research environment

AWS computing resources scale with user load,
providing good cost efficiency

Container orchestration provides high availability,
healing the cluster when there are hardware failures

STSCI | SCince wsrmore

®
i!4
a

¥4) Core technical challenges
/\

» Creating containers with pipeline/common software stacks
* Managing the cloud environment well:

« User quotas (storage, compute etc.)

* User storage (home directories), backups

* Scalable, highly-available infrastructure (with cost caps/alerts)
* Relative inexperience of STScl with commercial cloud

** Relatively few large-scale JupyterHub deployments on AWS

(@)
&
N

Jupyter on AWS
TN

* Started with Zero to JupyterHub
http://zero-to-jupyterhub.readthedocs.io/en/latest/

 For installing and managing JupyterHub with Kubernetes
Documentation was sparse.

* Many teething pains, especially in managing storage.
» There were hundreds of lines of comments in k8s regarding how to handle stoarge, but with no decisions.

Worked through many issues, then contributed back rewritten documentation and code (via open source pull
requests).

+ Goal is to have an out-of-the-box solution anyone could spin up.
» Users have begun exercising the system.
* Automated tests being added to really push the system, especially with scalability.

* Using github authN now, but work has begun on integrating with STScl SSO
« STScl SSO uses Shib, but we will probably create a bridge to that to leverage predominance of OAuth elsewhere.

STSCI | SCince wsrmore

