
JupyterHub on AWS

Tom Donaldson, on behalf of
Christian Mesh, Mike Fox, Iva Momcheva,

Josh Peek, Arfon Smith

EXPANDING THE FRONTIERS OF SPACE ASTRONOMY

Highlights of what we’re building

• Cloud-hosted copy of all HST public data

• (Live) JupyterLab environment with some compute/storage

• Collection of Docker containers installed with common tools

Common technologies, many implementers

Amazon Web Services: Public Dataset Program

• ~120TB public HST data
for ACS, COS, STIS,
WFC3, FGS

• Range of high-impact
datasets

• Hosted in cloud - ‘highly
available’

• Enable new types of data
analyses

• Hosted at no cost to
STScI/NASA

Amazon Web Services: Public Dataset Program

• Data is hosted in an S3 region (for ‘free’)

• Conditions of inclusion in program: make the data useful:

• An AMI with a demonstration of how to use the public dataset

must be provided

• AWS recover costs by making access to the data free from

AWS services (EC2), making it cost effective for researchers
to buy AWS computing time

• Enables new types of analyses

JupyterLab environment

• Interactive computing
environment

• Where most development
work is going from the
core Jupyter team

• Works with community
tools (e.g. Astropy)

Containers for different environments

Technical details:

• JupyterHub, a multi-user Hub, spawns, manages, and proxies multiple
instances of the single-user Jupyter notebook server.

• JupyterLab frontend provides notebook server, file management, and a
terminal shell

• Using Docker to containerize science environments, allows
a verified computing environment to be instantiated rapidly.

• Containers are versioned providing precise reproducibility
of the research environment

• AWS computing resources scale with user load,
providing good cost efficiency

• Container orchestration provides high availability,
healing the cluster when there are hardware failures

Core technical challenges

• Creating containers with pipeline/common software stacks

• Managing the cloud environment well:

• User quotas (storage, compute etc.)

• User storage (home directories), backups

• Scalable, highly-available infrastructure (with cost caps/alerts)

• Relative inexperience of STScI with commercial cloud

** Relatively few large-scale JupyterHub deployments on AWS

Jupyter on AWS

• Started with Zero to JupyterHub
• http://zero-to-jupyterhub.readthedocs.io/en/latest/
• For installing and managing JupyterHub with Kubernetes
• Documentation was sparse.
• Many teething pains, especially in managing storage.
• There were hundreds of lines of comments in k8s regarding how to handle stoarge, but with no decisions.

• Worked through many issues, then contributed back rewritten documentation and code (via open source pull
requests).

• Goal is to have an out-of-the-box solution anyone could spin up.
• Users have begun exercising the system.
• Automated tests being added to really push the system, especially with scalability.
• Using github authN now, but work has begun on integrating with STScI SSO
• STScI SSO uses Shib, but we will probably create a bridge to that to leverage predominance of OAuth elsewhere.

