

ML aspects of ZTF

Matthew J. Graham Research Professor ZTF Project Scientist

(and Ashish Mahabal, Umaa Rebbaprigada, Adam Miller, Yutaro Tachibana)

Alert structure: AVRO format

63 x 63 pixel 32-bit images

- ZOGY parameters
- Real-bogus score
- Star/galaxy score
- 3 nearest PS1 sources
- Nearest SS object
- Alert history

Rolling 30-day window light curve

https://github.com/ZwickyTransientFacility/ztf-avro-alert

Alert structure: AVRO format

63 x 63 pixel 32-bit images

- ZOGY parameters
- Real-bogus score
- Star/galaxy score
- 3 nearest PS1 sources
- Nearest SS object
- Alert history

Rolling 30-day window light curve

https://github.com/ZwickyTransientFacility/ztf-avro-alert

"Classic" S/G method

S/G training set

Simple model

Creating features

ZTF

Shape parameters from PS1 stack images

white feat =
$$\frac{\sum_{f}^{g,r,i,z,y} \text{feat}_{f} \times \text{SNR}_{f}^{2} \times \delta_{f}}{\sum_{f}^{g,r,i,z,y} \text{SNR}_{f}^{2}}$$

11 "white" features
reduce color dependency
no mag measurements

Results

~1 >> likely star

= 0.5 >> absolutely no idea

~0 >> likely galaxy

FPR = 0.005, TPR = 0.7, s/g score = 0.76 (LIGO model optimized)

70% of stars removed while re-

ML models are superior to lov

Real-bogus: Zooniverse

ZTF Classifier Performance

Vers	Date	#Train	# Real	# Bogus	# Feat	FPR	FNR	ACC	FNR at 1% FPR
t1_f1_c1	10 Jan	1620	1316	304	67	30.7	3.8	91.2	36.4
t6_f4_c3	17 Mar	5498	2749	2749	61	11.3	3.8	93.6	27.0
t7_f4_c3	11 April	7767	3361	4406	61	4.8	7.6	94.0	17.1
t8_f5_c3	7 May	14762	5076 (over-sampled to 9686)	9686	59	10.1	2.7	93.6	20.1

f5: removed two features deemed uninformative: infobitsci, infobitsref

Note: I did not balance classes in t7_f3_c3, where bogus was the majority class

I believe the effect of this is that the all scores are now shifted higher relative to the t7 classifier.

5/31/18

and Science Data Systems

Feature Importance

Streaks

- Based on random forest
- Synthetic data + ZTF images as input

More research areas

- Deep learning for R/B
- Convert time series to image representation and use CNNs
- Detect transients via CNNs without difference imaging
- Deep learning for streaks
- LSTMs and domain adaptation
- Active learning to minimize follow-up
- Predictive modelling

