A (very) Chandra-centric path to HiPS

Raffaele D'Abrusco

on behalf of

Michael Tibbetts, Zografou Panagoula and the CXC Data System team

CENTER FOR **ASTROPHYSICS**

HARVARD & SMITHSONIAN

Chandra HiPS

- An intuitive, easy-to-use visualization of Chandra data that makes justice to its unique observational properties
 need to look nice
 - ensure a satisfactory level of scientific fidelity
- Support for exploration and discovery of Chandra data
 - single observations
 - Chandra Source Catalog (CSC) sources
 - aggregate datasets (future)
- Everybody else is doing it...

The "raw" data

Chandra has observed a variety of different astrophysical environments with observational configurations meant to optimize the scientific goals of the PIs

- different instruments
- variable exposures and observing strategies
- ad hoc spatial/time arrangements of observations

Very heterogeneous archive

- Iarge dynamical range intra- and inter-observations, cross- and intra-field
- variety of different spectral behaviors
- point-like sources to complex, extended emission regions with complex morphologies, brightness and spectral structures

Archival geometry

Global footprint of Chandra archival observations is geometrically complex

- Small total footprint area (~1.9 square degrees)
- 12766 (ACIS) observations

Requirements

HiPS max spatial resolution comparable to ACIS pixel max resolution

➡ HiPS order 11 -> 0.2" tile pixel angular size

Standard data processing

- CIAO tools
- Red-Green-Blue images obtained filtering the event files according to the events' energy
- avoid custom processing methods for replicability and simplicity

Same approach for all the sky

- good solution for most fields
- still works well enough for fields with extreme properties

Divide et impera

Divide the sky into distinct fields and produce field-based HiPS

- ⇒ 2.1° radius
- each observation associated to only 1 field
- ➡ 12766 (ACIS) observations split in 1370 fields
- good for management of computational resources, gradual scientific QA of fields
- Generate per-field monochromatic HiPS in three energy bands and combine them to create the per-field RGB HiPS
 - Used the CSC energy bands definitions
 - ➡ R -> "soft" band (0.5-1.2 keV)
 - → G -> "medium" band (1.2-2.0 keV)
 - → B -> "hard" band (2.0-7.0 keV)

No smoothing

Merge the per-field RGB HiPS's into the all-sky RGB HiPS

Training and Testing

"Fine-tuning" of the HiPS production method

- → ~30 reference "rich" fields
- ~20 problematic fields: low signal, high background, highexposure/low-exposure high-background/low-background combinations

Validation of the final, global HiPS

- ~200 "famous" fields compared with the "press release" images and images from scientific publications
- reference+problematic fields
- metadata validation

- Processing of input images:
 - binned event files
 - exposure corrected images
- Optimal "normalization" of the pixel distribution of input images
 - cutoffs on pixel distribution max and min to reduce noise and impact of brightest pixels
 - several options tested, .05 and .99 quantiles of distributions in each image were adopted
- Mapping from pixel values to RGB space
 asinh function
 - Iogarithm

- Our friends at ESA kindly agreed to ingest the total Chandra HiPS in the integration ESASky server
 - checks on astrometric registration of HiPS relative to the fov's of single observations and CSC1.1 sources

Future developments

Short term

Approve final RGB Chandra HiPS for public distribution and distribute it as widely as possible

Short-medium term

Develop and test update mechanism to regularly add new public observations to the total RGB Chandra HiPS

Medium-long term

- create the Chandra catalog HiPS
 - matched release with CSC versions
 - based on stacked CSC data products (deeper)
- create grayscale archival HiPS (including HRC observations)