Disseminating *Galacticus* data through online platforms

Andrew Benson

The Carnegie Observatories

Cosmological N-body simulation of dark matter

Monte Carlo tree generator

Initial data

"Merger tree" representation of merging dark matter halos

ODE solver operates along each branch of tree to evolve galaxy properties

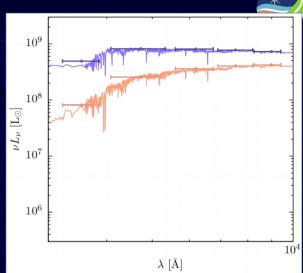
 $f(t, \mathbf{y})$

dy

dt

Processing

Output data

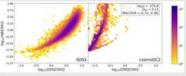


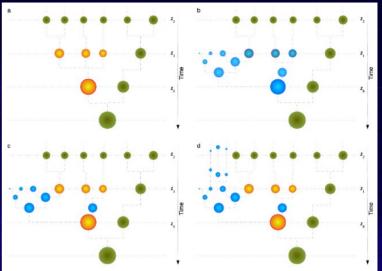
Catalog of galaxies with broad range of physical and observable properties

Current Platforms

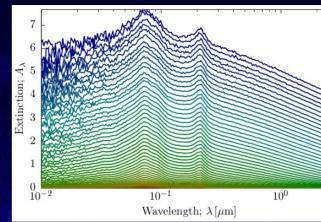
- LSST DC2 (used as input library)
- Theoretical Astrophysical Observatory
- CosmoSim
- github.com/galacticusorg/galacticus

- Understanding user needs
 - User needs often unknown, evolve!
 - Types of data
 - Physical properties (masses, SFR, etc.)
 - Observed properties (broad-band magnitudes [which?], SED [what resolution?], emission lines, etc.)
 - Metadata (halo/galaxy IDs, etc.)
 - Resolution, volume, depth (redshift)




Tests completed: cosmoDC2_v1.1.4_small VALIDATION_TEST_FAILED

Validating for user needs


Summary outputs: Emline_Lum_Ratio_Summary.txt config.yaml cosmoDC2_v1.1.4_small_emline_ratios.png

- How does a user know if this simulation is sufficient for their needs?
 - Users don't know the limitations and idiosyncrasies of each simulation (nor should they have to)
 - Built-in tools to construct one-point functions (e.g. luminosity functions) and validate against a dataset (DESCQA – Mao et al. 2018)
 - Intelligent warnings if a selection includes points close to the resolution limit?; some "reliability" property?

- Data inhomogeneity
 - Can be useful to support subsets of galaxies having different data, e.g.:
 - A subsample for which full RT dust emission spectra are included (computationally expensive)
 - A mix of N-body and Monte Carlo merger trees (the latter to fill in low mass galaxies below the N-body resolution limit)

 Ability to post-process eases the burden of guessing user needs in advance, e.g.:

Pre- vs. post-processing

- Apply (user-supplied) dust attenuation curve to luminosities/spectra
- Compute magnitudes in user-supplied filters
- Post-processing requires (substantial?) server-side computing

- Custom models
 - Ability to adjust parameters and generate a new model
 - Substantial server-side computing
 - Complex parameters to control
 - Parameter hierarchy
 - Validation of parameter values

<!-- Node evolution and physics --> v<nodeOperator value="multi"> <!-- Stellar feedback outflows --> v<nodeOperator value="stellarFeedbackDisks"> v<stellarFeedbackOutflows value="rateLimit"> <timescaleOutflowFractionalMinimum value="0.001"/> v<stellarFeedbackOutflows value="powerLaw"> <velocityCharacteristic value="250.0"/> <exponent value="3.5"/> </stellarFeedbackOutflows> </stellarFeedbackOutflows> </nodeOperator> v<nodeOperator value="stellarFeedbackSpheroids"> v<stellarFeedbackOutflows value="rateLimit"> <timescaleOutflowFractionalMinimum value="0.001"/> v<stellarFeedbackOutflows value="powerLaw"> <velocityCharacteristic value="100.0"/> <exponent value="3.5"/> </stellarFeedbackOutflows> </stellarFeedbackOutflows> </nodeOperator> </nodeOperator>