MC-CNC

Authentication in Web Services
and TAP-1.1 specific issues

Patrick Dowler
Canadian Astronomy Data Centre

l*. National Research Conseil national de

Council Canada recherches Canada

VOSI-capabilities 101

e a web service endpoint for a self-describing service
- e.g. http://example.net/service/capabilities
— (contains 1+) capability standardID: what feature is this?
— (contains 1+) interface: a single callable endpoint
— contains 1 accessURL
— contains 1 securityMethod* (optional)

<capability standardID="vos://cadc.nrc.ca~vospace/CADC/std/LOGGING#logControl-1.0">
<interface xsi:type="vs:ParamHTTP" role="std" version="1.0">
<accessURL use="full">
https://www.cadc-ccda.hia-iha.nrc-cnrc.gc.ca/ams/logControl
</accessURL>
<securityMethod standardID="ivo://ivoa.net/sso#tls-with-certificate" />
</interface>
</capability>

http://www.cadc-ccda.hia-iha.nrc-cnrc.gc.ca/ams/logControl

Web Service A&A @ CADC

e 23 RESTful web services in operation (CADC + CANFAR)
— 15 are IVOA standard services
— 8 are custom services

e all of these use VOSI-capabilities

e all of these have at least one capability which describes
authenticated access (~45 capabilities)

e clients consult a runtime-registry to find the capabilities
— optimised for resourcelD — capabilities URL

e clients read the capabilities document and look for the combination
of {standard|D,securityMethod} that match:
— the feature they want to invoke
— the credentials they want to use to authenticate

e @CADC: {resourcelD,standardID,securityMethod} — {accessURL}
happens several times per request & millions of times per day

TAP and Authentication

e VOSI-capabilities / VOResource model is that a capability is a single
feature
e In TAP-1.0, we specified relative names for the endpoints:
— [availability
— /[capabilities
- /[tables
- [async
- /sync
e BUT we specified one standardID for the base URL
— clients have to append the specified names
— auth methods that use alternate path names not feasible
e TAP-1.0 doesn'’t play nice with all securityMethod(s)
e TAP-1.0 over-specified how accessURL(s) should look (IMO)
e TAP-1.1 must support authentication and must provide a good
backwards-compatible experience for older client s/w

TAP and Authentication

e prototype #1: one capability for each securityMethod

® pros:
- none
® cCons:

naive client that assumed one anonymous capability per
standardID would fail or depend on ordering

lots of redundancy in VOSI-capabilities documents

inside-out with respect to the VOResource model where
securityMethod is at the leaf

make an assumption that multiple capability(s) with the same
standardID are the same underlying thing rather than different
things...

... if that was specified, it would restrict how people deploy
services

TAP and Authentication

e prototype #2: separate standardID for sync and async
ivo://ivoa.net/std/TAP#sync-1.1
ivo://ivoa.net/std/TAP#async-1.1
SODA-1.0 defines #sync-1.0 and #async-1.0
VOSpace-2.1 defines #transfers and #sync-2.1

® pros:
— did not break any old clients (we had this in operational use for
years)
— matches design of VOResource
— backwards compatible records simple
— allows for different TAPRegExt metadata (e.g. optional features,
limits) in sync and async
® Cons:
— duplicates TAPRegEXxt info in sync and async
— makes example RegTAP queries return different (more) results

TAP and Authentication

e prototype #3: separate interface type for sync and async
e |ookup becomes:

{resourcelD,standardID,interfaceType,securityMethod} — accessURL

® pros:
— does not break any old clients (in operational use for a few
months)
— backwards compatible records possible
® Cons:

— backwards compatible records are subtle

— set of interface(s) mixes base (client appends resource name)
and full (accessURL includes resource name)

— makes example RegTAP queries return different (more) results
that users have to grok

TAP and Authentication

e approach #1: it's horrible and it breaks stuff

e approach #3 works, BUT: introduces subtle use of interface types
and mixed interface style in a single capability

e approach #2: separate #sync-1.1 and #async-1.1
— matches the VOResource/VOSI-capabilities design
— works the same way as all other IVOA services
e | am convinced that:
— we made a mistake in TAP-1.0 when we specified one
standardID for two features
— when we make mistakes we have to admit it and stop doing it in
order to improve our standards
— sometimes that makes things a little more complex

