MC-CNC

Managing Web Service Evolution with
VOSI-capabilities

Patrick Dowler
Canadian Astronomy Data Centre

l*. National Research Conseil national de
Council Canada recherches Canada

What is VOSI-capabilities?

e a web service endpoint for a self-describing service
- e.g. http://example.net/service/capabilities
e capability: a single feature
— standardID attribute: what feature is this?
— contains 1+ interface(s)
e interface: a single callable endpoint
— contains 1 accessURL
— contains 1 securityMethod* (optional)
— exists mostly to create the accessURL,securityMethod pair
e accessURL: the usable (possibly base) URL
e securityMethod: a constant specifying what kind of authentication
the sibling accessURL supports or requires
e with a registry extension to define a capability sub-type, other
information about the service can be included
e do not need a registry extension to use VOSI-capabilities!!

How do | use VOSI-capabilities?

chose an appropriate I[VOA standardID or...
... define a custom standardID for each feature of the service

add a VOSI-capabilities resource to the service
write clients to read the capabilities document instead of embedding
service URLs in code or config

clients read the capabilities document and look for the combination
of {standard|D,securityMethod} that match:

— the feature they want to invoke

— the credentials they want to use to authenticate

Service Evolution Use Cases

e change in REST API
— behaviour (redirects, side effects)
— error messages/code clients do something with
— bug fix where existing client actually depends on the bug
— shift of some responsibility from service to client

e change in input and/or output format
— clients can read and write xsd version N
— server can read and write version N
— data model change ~ xml schema change — version N+1
— want to switch to version N+1

Service Evolution : multi-stage release

e increment version in standardID of the feature

e add new endpoint and capability to service with the new standardID
— different accessURL in the same service

e deploy service (supports current and new clients)

e modify client to look for new version (standardID) and work correctly
e release client to users

e wait for users to upgrade...
e wait for use of old client to stop...
e track down users and help them upgrade...

e eventually remove old endpoint from service

Service Evolution : multi-stage release

e probably hard to support more than two adjacent versions
— could be weeks or months, probably not a year
® pros:
— eliminates “downtime” of a monolithic client-server release
— allows some users to straggle behind for awhile
— allows for limited releases to detect and/or minimise the impact
of subtle side effects
® Cons:
— version number alone makes it hard to write client tools to detect
that they are out of date (parsing/ordering versioned standardID)
— deprecated flag and message inside the capability?
e con?
— this usage doesn’t really match the cadence of IVOA standard
minor versions... this usage allows for much higher cadence of
minor versions

