
Managing Web Service Evolution with 
VOSI-capabilities

Patrick Dowler
Canadian Astronomy Data Centre



What is VOSI-capabilities?

● a web service endpoint for a self-describing service
− e.g. http://example.net/service/capabilities

● capability: a single feature
− standardID attribute: what feature is this?
− contains 1+ interface(s)

● interface: a single callable endpoint
− contains 1 accessURL
− contains 1 securityMethod* (optional)
− exists mostly to create the accessURL,securityMethod pair

● accessURL: the usable (possibly base) URL
● securityMethod: a constant specifying what kind of authentication 

the sibling accessURL supports or requires
● with a registry extension to define a capability sub-type, other 

information about the service can be included
● do not need a registry extension to use VOSI-capabilities!!



How do I use VOSI-capabilities?

● chose an appropriate IVOA standardID or…
... define a custom standardID for each feature of the service

● add a VOSI-capabilities resource to the service
● write clients to read the capabilities document instead of embedding 

service URLs in code or config
 

● clients read the capabilities document and look for the combination 
of {standardID,securityMethod} that match:
− the feature they want to invoke
− the credentials they want to use to authenticate



Service Evolution Use Cases

● change in REST API
− behaviour (redirects, side effects)
− error messages/code clients do something with
− bug fix where existing client actually depends on the bug
− shift of some responsibility from service to client

● change in input and/or output format
− clients can read and write xsd version N
− server can read and write version N
− data model change ~ xml schema change → version N+1
− want to switch to version N+1



Service Evolution : multi-stage release 

● increment version in standardID of the feature
● add new endpoint and capability to service with the new standardID

− different accessURL in the same service
● deploy service (supports current and new clients)
….
● modify client to look for new version (standardID) and work correctly
● release client to users
….
● wait for users to upgrade…
● wait for use of old client to stop…
● track down users and help them upgrade…
….
● eventually remove old endpoint from service



Service Evolution : multi-stage release 

● probably hard to support more than two adjacent versions
− could be weeks or months, probably not a year

● pros:
− eliminates “downtime” of a monolithic client-server release
− allows some users to straggle behind for awhile
− allows for limited releases to detect and/or minimise the impact 

of subtle side effects
● cons: 

− version number alone makes it hard to write client tools to detect 
that they are out of date (parsing/ordering versioned standardID)

− deprecated flag and message inside the capability?
● con?

− this usage doesn’t really match the cadence of IVOA standard 
minor versions… this usage allows for much higher cadence of 
minor versions


