
Fig. 1

Fig. 2

Fig. 3

1. HTTPS in the VO

(cf. Fig. 1)

Markus Demleitner
msdemlei@ari.uni-heidelberg.de

(cf. Fig. 2)

• HTTPS is nice. . .

• . . . but an operational liability.

• Mitigation

(cf. Fig. 3)

2. HTTPS is nice

• Basic protection of credentials in certain (arguably broken) authentication schemes

• Message integrity protection

• Half-working stand-in for code signing of javascript (though 99.9% of the malicious javas-
cript isn’t delivered by intercepting http and never was)

• Perhaps a bit more privacy

Anyway, people are migrating to HTTPS, and we’ll have to work out a scheme to deal with it.

1

3. HTTPS is a liability

• Services need to manage their certificates, update them, make sure they cover all their host
names,. . .

• Clients need to keep their CA certificates up to date, typically separately for OS, Java, and
browser.

• No caching.

• Proxying is a lot messier.

• Bytestream-level debugging means a MITM attack against yourself.

• No WebSAMP. (Ok, we should wean our users from web pages anyway, but let’s keep this
realistic)

In my operation of GloTS, https services appear about three times more likely to fail than
http services; things have improved a lot since I’ve switched of certificate checking, but then of
course https becomes pointless, and we certainly can’t recommend that as a mitigation of the
operational liability.

4. Proposal for Mitigation

1. Recommend having both http and https interfaces. (Required for letsencrypt anyway)

2. Leave preference to operator.

3. In VOSI/Registry declare the alternative interface as mirrorURL.

That is:

<interface>

<accessURL>http://example.org/tap</accessURL>

<mirrorURL>https://example.org/tap</mirrorURL>

</interface>

or

<interface>

<accessURL>https://example.org/tap</accessURL>

<mirrorURL>http://example.org/tap</mirrorURL>

</interface>

5. Comments?

Could this be made more useful by agreeing on a bespoke mirrorURL/@title (“secured”)?

Client writers feel this would be a lot easier to handle if the access URLs pointed to a whole
bundle of DALI/VOSI resources.

Piecing together a full service profile from URLs from half a dozen interface elements isn’t
fun (but that’s a general one, really).

2


