
INAF VOSpace: status updates
Nicola Fulvio Calabria, Sonia Zorba, Cristiano Urban, Sara Bertocco, Cristina Knapic, Massimo Sponza

Virtual Interoperability Meeting - November 2021

IA2 tape use case

General overview

● pushToVoSpace and pullFromVoSpace
endpoints point to File Service

● Transfer Service performs import and
export of files from the storage
reachable from File Service to the tape
and vice versa

● file metadata is stored in a shared
database

● A&A based on OAuth2

Tape async recall

<vos:properties>

<!-- ... -->

<vos:property uri="urn:ia2:async-trans">true</vos:property>

</vos:properties>

Custom property in node to indicate that data is not immediately available for download:

Recall multiple nodes from tape
Use case: user wants to perform an asynchronous recall of multiple nodes (e.g. a subset of files
inside a directory).

Problems:
● VOSpace transfer operations expect one target node.
● We can’t start multiple jobs (one for each node) because tape library software automatically

optimizes the retrieval of a set of files from multiple cartridges.

Solution: a custom view (async-recall) is created. It contains the list of nodes to transfer using the
“/include” parameter. The view populates a pullToVoSpace e target.

Versatile approach: we use other custom views to enable zip/tar archive creation by users

● The same token used for VOSpace is forwarded to GMS (token relay)

● All the groups are retrieved and result is cached for some minutes

● getNode() endpoint returns only the nodes that can be accessed by the user (according to groupRead

property), so filtering each node using isMemberOf could be heavyweight

Communication with token-based GMS

RFC 6819: «If access tokens are sent via URI query
parameters, such tokens may leak to log files and the
HTTP "referer".»

→ a new token with a narrower scope, jti claim and
shorter expiration is generated using Token Exchange
(RFC 8693) for file transfer requests to File Service

Implementation of OAuth2 token exchange in transfers:

Used technologies

● File metadata is stored in a PostgreSQL database with ltree extension

● JAXB beans automatically generated from XSD files using XJC

● Spring Boot for the REST service and the File Service

● Jackson combined with JAXB to support both XML and JSON payloads

● Python for the Transfer Service with Redis queues for handling jobs

● Spring Boot + Vue.js for the UI

Development is in progress, ready for production in the next months.

Code available here: https://www.ict.inaf.it/gitlab/vospace (still partially private)

Tests with CADC vofs module shown a good level of compatibility.

Current status

https://www.ict.inaf.it/gitlab/vospace

Undeletable nodes
Sticky nodes: users can edit their properties (e.g. groupRead) but can’t delete

them. Children nodes are not affected. Already implemented.

Immutable nodes: read-only nodes, their children inherit this property, proper
abstraction of a Long Term Preservation node. Plan to implement.

Recursive groups update
We added a parameter to the setNode synchronous operation for performing the groupRead
and groupWrite update recursively on all child nodes.

Performances are good.

-> Switch to an asynchronous implementation for the REST setNode operation?

Plans

Thanks for your attention

Questions?

Contact:
nicola.calabria@inaf.it

sonia.zorba@inaf.it

BACKUP

Use case: user wants to share a node with another user.

We are using special groups in the GMS that are associated with a single user.

<vos:property uri="ivo://ivoa.net/vospace/core#groupread">mygroup1 people.user2</vos:property>

“Single-user groups” sharing

group of
users

special
“single-user

group”

<vos:transfer ...>

<vos:target>vos://example.com!vospace/mynode</vos:target>

<vos:direction>pushToVoSpace</vos:direction>

<vos:protocol uri="ivo://ivoa.net/vospace/core#httpput">

<vos:endpoint>http://file-service/mynode?token=eyJ0eXA...</vos:endpoint>

</vos:protocol>

</vos:transfer>

OAuth2 token exchange in transfers

RFC 6819: «If access tokens are sent via URI query
parameters, such tokens may leak to log files and the
HTTP "referer".»

→ a new token with a narrower scope, jti claim and
shorter expiration is generated using Token Exchange
(RFC 8693)

