

TAP Specification

● current draft is TAP 0.3, recent work by editors only

● agreements from Trieste, 2008

● scope:

– sync and async query execution

– ADQL queries and param-based queries
● balance UWS and DAL

– UWS: REST, resource-based, async

– DAL: operation-based, sync

– compliance requirements: MUST and SHOULD

TAP Specification
● service base URL ($baseURL): not specified

● http endpoints

– $baseURL/async (MUST)

– $baseURL/sync (MUST)
● core DAL params: REQUEST, VERSION

– REQUEST=adqlquery (MUST)

– REQUEST=paramquery (SHOULD)

– VERSION=<version of the TAP spec>

– REQUEST and VERSION tell service how to interpret
remaining params

TAP Specification
● async ADQL query:

– POST
http://example.com/path/async?REQUEST=adqlquery&...

– response: redirect to job URL

...
● sync ADQL query:

– POST, GET?
http://example.com/path/sync?REQUEST=adqlquery&...
(all params specified here)

– response: blocks, returns result

http://example.com/path/sync?REQUEST=adqlquery&

TAP Specification
● async PARAM query:

– POST
http://example.com/path/async?REQUEST=paramquery&...

– response: redirect to job URL

...
● sync PARAM query:

– POST, GET?
http://example.com/path/sync?REQUEST=paramquery&...
(all params specified here)

– response: blocks, returns result

TAP Specification: async

● UWS pattern

– POST creates a new query in PENDING state,
redirects to http://example.com/path/async/<jobID>

– GET returns the job-list

– all resources under the job are mutable (PENDING)

– execute job by POST PHASE=RUN to
http://example.com/path/async/<jobID>/phase

– monitor phase resource until job done
(COMPLETED, ERROR, ABORTED)

http://example.com/path/async/

async job resources
● following UWS, each parameter is exposed as

a resource of the same name, e.g.
– $baseURL/async/<jobID>/request

– $baseURL/async/<jobID>/version

– $baseURL/async/<jobID>/query

– $baseURL/async/<jobID>/lang

– $baseURL/async/<jobID>/format

– $baseURL/async/<jobID>/upload/foo

– $baseURL/async/<jobID>/upload/bar

– plus the standard UWS resources

● need a simple schema for these

REQUEST=adqlquery
● QUERY=<ADQL query> (MUST)

– if tables contain datetime values, support ISO8601
datetime format (MUST)

– if tables contain spatial values, support POINT, CIRCLE,
BOX, REGION, INTERSECTS, COORDSYS, COORD1,
COORD2 (MUST)

– support STC-S as string format for REGION (MUST)

– support STC-S coordinate systems in POINT, CIRCLE,
BOX (MUST)

– support AREA, CENTROID, CONTAINS, POLYGON
(MAY)

● LANG=<query language and version> (MUST)

REQUEST=adqlquery (and param)
● FORMAT=votable (MUST)

● FORMAT=csv (SHOULD)

● UPLOAD=<table name>,<table URI>;...

– table name must be a legal ADQL table name

– table URI (vos:, http:, etc) provides the content

– tables usable in query using specified name, in
reserved schema TAP_UPLOAD, e.g.

● UPLOAD=foo,http://example.com/foo.xml
● SELECT * from TAP_UPLOAD.foo

– column names from VOTable FIELD element, name
attribute: must be legal ADQL column names

http://example.com/foo.xml

multi-position query

POST $baseURL/async?

REQUEST=adqlquery&

UPLOAD=bar,http://example.com/mytable.xml&

QUERY=SELECT * FROM atable AS a JOIN TAP_UPLOAD.bar AS b
ON INTERSECTS(a.shape, b.location)

...

● all the same params with async and sync endpoints

– endpoints could have different limits (MAXREC)

outstanding issue: metadata

● capabilities, availability, table metadata
● DAL2: REQUEST=getCapabilities

– which endpoint? both?

– table metadata identical for both endpoints

– capabilities identical?

– availability always the same?

● REST: $baseURL/capabilities
● SSA did not anticipate multiple endpoints
● sync + async (UWS) requires it

