

Puna InterOp 20/10/2011

A new working grammar for describing
parameters (and their constraints) within the

Virtual Observatory

Carlo Maria Zwölf, Franck Le Petit, Paul Harrison.

Recall the context
● In Naples we presented some ideas fur further developments in the

UWS

Recall the context
● In Naples we presented some ideas fur further developments in the

UWS

Grouped by:

What the service do (and how)

How to interact with the service (medium)

Explain the 'language' used for interacting
with service

Which service should be chosen to meet
given needs...
How to reach the service functions...

How to build the arguments for calling
service functions and understanding the
output results

Recall the context
● In Naples we presented some ideas fur further developments in the

UWS

● We have considered that starting work on the Parameter description
layer is more profitable (and useful through the VO, beyond the UWS scope)

Recall the context
● In Naples we presented some ideas fur further developments in the

UWS

● We have considered that starting work on the Parameter description
layer is more profitable (and useful through the VO, beyond the UWS scope)

● This layer

● Could work as an additional (and optional) component of UWS
● Makes interoperability straightforward by checking automatically if

two (or more) services could be 'piped' into a given workflow

Recall the context
● In Naples we presented some ideas fur further developments in the

UWS

● We have considered that starting work on the Parameter description
layer is more profitable (and useful through the VO, beyond the UWS scope)

● This layer

● Could work as an additional (and optional) component of UWS
● Makes interoperability straightforward by checking automatically if

two (or more) services could be 'piped' into a given workflow

● Our needs comes from the requirements of Theory Group: they
would like to deploy online codes with complex sets of in(out)put
data .

Building our solution

Our goal is

● Finely describe the set of parameters (inputs & outputs) of a given
service in a way that

● Could be understood easily by humans
● Could be interpreted and handled by a computer

Building our solution

Our goal is

● Finely describe the set of parameters (inputs & outputs) of a given
service in a way that

● Could be understood easily by humans
● Could be interpreted and handled by a computer

● Describe complex relations and constraints on and between
parameters

Building our solution

Our goal is

● Finely describe the set of parameters (inputs & outputs) of a given
service in a way that

● Could be understood easily by humans
● Could be interpreted and handled by a computer

● Describe complex relations and constraints on and between
parameters

Building our solution

Our goal is

● Finely describe the set of parameters (inputs & outputs) of a given
service in a way that

● Could be understood easily by humans
● Could be interpreted and handled by a computer

● Describe complex relations and constraints on and between
parameters

Building our solution

Our goal is

● Finely describe the set of parameters (inputs & outputs) of a given
service in a way that

● Could be understood easily by humans
● Could be interpreted and handled by a computer

● Describe complex relations and constraints on and between
parameters

Existing products (ex. Apache Wadl) do not have this fine
required descriptive capabilities.

Building our solution

Our goal is

● Finely describe the set of parameters (inputs & outputs) of a given
service in a way that

● Could be understood easily by humans
● Could be interpreted and handled by a computer

● Describe complex relations and constraints on and between
parameters

Existing products (ex. Apache Wadl) do not have this fine
required descriptive capabilities.

Our ideas lead to a working solution fitting our
requirements.

The working solution
● The grammar and syntax for building parameters description are

fixed in a XML schema:

http://code.google.com/p/vo-param/source/browse/trunk/model/src/schema/UWS2-V1.1.xsd

The working solution
● The grammar and syntax for building parameters description are

fixed in a XML schema:

http://code.google.com/p/vo-param/source/browse/trunk/model/src/schema/UWS2-V1.1.xsd

● In practice:
● Service providers (unless they want) don't need to handle directly the XSD file

A GUI will be provided for composing the service description in few clicks

(This development is a part of a course that will take place during the first half 2012)

The working solution
● The grammar and syntax for building parameters description are

fixed in a XML schema:

http://code.google.com/p/vo-param/source/browse/trunk/model/src/schema/UWS2-V1.1.xsd

● In practice:
● Service providers (unless they want) don't need to handle directly the XSD file

A GUI will be provided for composing the service description in few clicks

(This development is a part of a course that will take place during the first half 2012)

● With our protocol, one could easy express

– All the possible mathematical expressions involving parameters

– All the possible conditional sentences (provided they have a logical sense)

The working solution
● The grammar and syntax for building parameters description are

fixed in a XML schema:

http://code.google.com/p/vo-param/source/browse/trunk/model/src/schema/UWS2-V1.1.xsd

● In practice:
● Service providers (unless they want) don't need to handle directly the XSD file

A GUI will be provided for composing the service description in few clicks

(This development is a part of a course that will take place during the first half 2012)

● All the following examples are automatically generated from Java code using
the JaxB Api.

● With our protocol, one could easy express

– All the possible mathematical expressions involving parameters

– All the possible conditional sentences (provided they have a logical sense)

• Code modeling the micro-physics of interstellar clouds
(used to interpret HERSCHEL observations)

• Already Implemented in Astrogrid (CEA) in 2007.

• Incident radiation feld
• observer and back side
• ISRF intensity
• Type of stellar spectrum
• distance of the star
• ...

• Grains properties
• R min and max
• Extinction properties
• ...

• State equation
• isochore (density)
• isobare (pressure)
• specifc user density profle
• ...

Non trivial relationships between parameters

A working example : the PDR code

About the interoperability

Service 2 :
Inputs a,b reals

Outputs c real and
c=+abs(a-b)

Service 1 :
Inputs a,b reals

Outputs c real and
c=-abs(a-b)

Service 3 :
Inputs c reals

Outputs d real and
d=sqrt(c)

About the interoperability

Service 2 :
Inputs a,b reals

Outputs c real and
c=+abs(a-b)

Service 1 :
Inputs a,b reals

Outputs c real and
c=-abs(a-b)

Service 3 :
Inputs c reals

Outputs d real and
d=sqrt(c)

About the interoperability

Service 2 :
Inputs a,b reals

Outputs c real and
c=+abs(a-b)

Service 1 :
Inputs a,b reals

Outputs c real and
c=-abs(a-b)

Service 3 :
Inputs c reals

Outputs d real and
d=sqrt(c)

About the interoperability

Service 2 :
Inputs a,b reals

Outputs c real and
c=+abs(a-b)

Service 1 :
Inputs a,b reals

Outputs c real and
c=-abs(a-b)

Adding the constraints with our formalism...

Service 3 :
Inputs c reals

Outputs d real and
d=sqrt(c)

About the interoperability

Service 2 :
Inputs a,b reals

Outputs c real and
c=+abs(a-b)

Always c > 0

Service 1 :
Inputs a,b reals

Outputs c real and
c=-abs(a-b)

Always c < 0
Service 3 :

Inputs c reals
Always c > 0

Outputs d real and
d=sqrt(c)

Always d > 0

About the interoperability

Service 2 :
Inputs a,b reals

Outputs c real and
c=+abs(a-b)

Always c > 0

Service 1 :
Inputs a,b reals

Outputs c real and
c=-abs(a-b)

Always c < 0
Service 3 :

Inputs c reals
Always c > 0

Outputs d real and
d=sqrt(c)

Always d > 0

About the interoperability

Service 2 :
Inputs a,b reals

Outputs c real and
c=+abs(a-b)

Always c > 0

Service 1 :
Inputs a,b reals

Outputs c real and
c=-abs(a-b)

Always c < 0
Service 3 :

Inputs c reals
Always c > 0

Outputs d real and
d=sqrt(c)

Always d > 0

More generally we can formalize this as following...

About the interoperability

About the interoperability

The equality is in the sense that parameters have same

UCDs

UTypes

SkossConcepts

Units

About the interoperability

The equality is in the sense that parameters have same

UCDs

UTypes

SkossConcepts

Units

If the difference is on units, the services are still compatibles: we can build a third service performing
the unit change, making interoperability possible.

Sketch of the integral solution

XML Schema
Model

XML Service
Description

GUI
tool

Sketch of the integral solution

XML Schema
Model

XML Service
Description

GUI
tool

Set of
Automatic tools

for

Generating a dynamic
GUI for interacting

with service

Sketch of the integral solution

XML Schema
Model

XML Service
Description

GUI
tool

Set of
Automatic tools

for

Generating a dynamic
GUI for interacting

with service

Sketch of the integral solution

XML Schema
Model

XML Service
Description

GUI
tool

Set of
Automatic tools

for

Generating a dynamic
GUI for interacting

with service

Sketch of the integral solution

XML Schema
Model

XML Service
Description

GUI
tool

Set of
Automatic tools

for

Generating a dynamic
GUI for interacting

with service

Sketch of the integral solution

XML Schema
Model

XML Service
Description

GUI
tool

Set of
Automatic tools

for

Generate a dynamic
GUI for interacting

with service

Sketch of the integral solution

XML Schema
Model

XML Service
Description

GUI
tool

Set of
Automatic tools

for

Generating a dynamic
GUI for interacting

with service

Generating the checking
algorithms for validating

inputs and outputs
(according to the description)

Sketch of the integral solution

XML Schema
Model

XML Service
Description

GUI
tool

Set of
Automatic tools

for

Generating a dynamic
GUI for interacting

with service

Generating the checking
algorithms for validating

inputs and outputs
(according to the description)

Computing the interoperability
between all the available

services (by implementing
the previous algorithm)

Concluding remarks

With our formalism:

● Users can easily describe parameters and overall their constraints in
a unified way

● Descriptions are human readable and could be understood by
computers.

Interoperability graphs connecting services can be computed
a priori automatically

It is a consistent step towards a real and integrated interoperability in
the VO.

Concluding remarks

With our formalism:

● Users can easily describe parameters and overall their constraints in
a unified way

● Descriptions are human readable and could be understood by
computers.

Interoperability graphs connecting services can be computed
a priori automatically

It is a consistent step towards a real and integrated interoperability in
the VO.

Thank you for your kind attention.

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21
	Diapo 22
	Diapo 23
	Diapo 24
	Diapo 25
	Diapo 26
	Diapo 27
	Diapo 28
	Diapo 29
	Diapo 30
	Diapo 31
	Diapo 32
	Diapo 33
	Diapo 34
	Diapo 35
	Diapo 36
	Diapo 37
	Diapo 38

