|’ .@va‘%owe S ual
de Paris servatory
Paris Data Centre
Puna InterOp 17/10/2011

Parameter Description Language:
describing parameters (and their constraints)
within the Virtual Observatory

Carlo Maria Zwolf, Franck Le Petit, Paul Harrison.

////f////////%
"""" ?7 / el LUTH MANCI_IESTER
Ypr?”” 1824
Laboratoire d’Etude du Rayonnement Laboratdire Univers et Théories

et de la Matiére en Astrophysique The University of Manchester

Recall the context

* |In Naples we presented some ideas fur further developments in the
UWS

Recall the context

* |In Naples we presented some ideas for further developments in the
UWS

 We have start working on a layer we called Parameter description
language.

Recall the context

* |n Naples we presented some ideas for further developments in the
UWS

 We have start working on a layer we called Parameter description
language.

|t quickly appeared that this layer
e Could work as an additional (and optional) component of UWS
e Could be profitable transversally into the VO context.

» Makes interoperability straightforward by checking automatically
if two (or more) services could be 'piped' into a given workflow

Recall the context

In Naples we presented some ideas for further developments in the
UWS

We have start working on a layer we called Parameter description
language.

It quickly appeared that this layer

e Could work as an additional (and optional) component of UWS
e Could be profitable transversally into the VO context.

» Makes interoperability straightforward by checking automatically
if two (or more) services could be 'piped' into a given workflow

Our needs comes from the requirements of Theory Group: they
would like to deploy online codes with complex sets of in(out)put
data making them interoperable with databases (Sim-DB, spectra,
images,...).

Building our solution

Our goal is

* Finely describe the set of parameters (inputs & outputs) of a given
service (in the largest informatics sense) in a way that

e Could be understood easily by humans
e Could be interpreted and handled by a computer

Building our solution

Our goal is

* Finely describe the set of parameters (inputs & outputs) of a given
service (in the largest informatics sense) in a way that

e Could be understood easily by humans
e Could be interpreted and handled by a computer

* Describe complex relations and constraints on and between
parameters

Building our solution

Our goal is

» Finely describe the set of parameters (inputs & outputs) of a given
service (in the largest informatics sense) in a way that

e Could be understood easily by humans
e Could be interpreted and handled by a computer

* Describe complex relations and constraints on and between
parameters

Input:
® p,isam/svector speed and |p,| < ¢
® p,is a Kelvin temperature and p, > 0
® piisakgmassandp; >0

Output:
® p,isadoule Energy and p, > 0

Building our solution

Our goal is

» Finely describe the set of parameters (inputs & outputs) of a given
service (in the largest informatics sense) in a way that

e Could be understood easily by humans
e Could be interpreted and handled by a computer

* Describe complex relations and constraints on and between

parameters
Input:

® Ropi>0pseN;pgelR
® ifp; €]0,7/2] then
ps € {2;4;6}, p3 € [—1,+1] and (|sin(p1)?* — p3|)*/? < 3/2.

® if py €]n/2, 7] then
0 < pa < 10, p3 > log(p2) and (py - p2) must belong to N.

Output:

* D4, Ps € R?

9

Building our solution

Our goal is

» Finely describe the set of parameters (inputs & outputs) of a given
service (in the largest informatics sense) in a way that

e Could be understood easily by humans
e Could be interpreted and handled by a computer

* Describe complex relations and constraints on and between
parameters

Existing products (ex. Apache Wadl) do not have this fine
required descriptive capabilities.

Building our solution

Our goal is

* Finely describe the set of parameters (inputs & outputs) of a given
service (in the largest informatics sense) in a way that

e Could be understood easily by humans
e Could be interpreted and handled by a computer

* Describe complex relations and constraints on and between
parameters

Existing products (ex. Apache Wadl) do not have this fine
required descriptive capabilities.

Y
o, == Our ideas lead to a working solution fitting our
requirements.

The working solution

 The grammar and syntax for building parameters description are
fixed in a XML schema:

http://code.google.com/p/vo-param/source/browse/trunk/model/src/schema/UWS2-V1.1.xsd

The working solution

 The grammar and syntax for building parameters description are
fixed in a XML schema:

http://code.google.com/p/vo-param/source/browse/trunk/model/src/schema/UWS2-V1.1.xsd
* |n practice:

« Service providers (unless they want) don't need to handle directly the XSD file

!

A GUI and an ad hoc command line framework will be provided for composing
the service description in few clicks

(This development is a part of a course that will take place during the first half 2012)

The working solution

 The grammar and syntax for building parameters description are
fixed in a XML schema:

http://code.google.com/p/vo-param/source/browse/trunk/model/src/schema/UWS2-V1.1.xsd
* |n practice:

« Service providers (unless they want) don't need to handle directly the XSD file

!

A GUI and an ad hoc command line framework will be provided for composing
the service description in few clicks

(This development is a part of a course that will take place during the first half 2012)

« With our protocol, one could easy express
- All the possible mathematical expressions involving parameters

- All the possible conditional sentences (provided they have a logical sense)

The working solution

 The grammar and syntax for building parameters description are
fixed in a XML schema:

http://code.google.com/p/vo-param/source/browse/trunk/model/src/schema/UWS2-V1.1.xsd
* |n practice:

« Service providers (unless they want) don't need to handle directly the XSD file

!

A GUI and an ad hoc command line framework will be provided for composing
the service description in few clicks

(This development is a part of a course that will take place during the first half 2012)

« With our protocol, one could easy express
- All the possible mathematical expressions involving parameters

- All the possible conditional sentences (provided they have a logical sense)

All the following examples are automatically generated from Java code using
the JaxB Api.

A working example : the PDR code

* Code modeling the micro-physics of interstellar clouds
(used to interpret HERSCHEL observations)

* Already Implemented in Astrogrid (CEA) in 2007.

lsotropiq AF Two sides model Isotropic AF
Beamed AF | [
——> " Y,
L '_1 .-.
. H Hy H, 0 | ¥
_.-. =
> 7\ S N
e I.'H._.-' u
Star in front of the PDR | radm radp I

Obzerver sido

® |Incident radiation field | e State equation
® observer and back side | @ isochore (density)

® |SRF intensity ® isobare (pressure)

® Type of stellar spectrum] e specific user density profile
® distance of the star ° .

. e

Non trivial relationships between parameters

3

® Grains properties
® R min and max
® Extinction properties

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<UWS_Service xmlns="http://www.ivoa.net/xml/Parameter/v@.1"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalLocation="http://www.ivoa.net/xml/Parameter/v@0.1 UWS2-

V1.1.xsd">

<ParameterGroup>
<Name>RadiationFieldAndGeometry</Name>
<parameterRef parameterName="F_ISRF" />
<parameterRef parameterName="radm" />
<parameterRef parameterName="radp" />

<ServiceId>PDR_ONLINE</Serviceld>
<serviceName>PDR-1D</serviceName>

<Description>Description layer of the PDR code</Description>

<ParameterList>
<parameter>
<Name>F_ISRF</Name>
<ParameterType>integer</ParameterType>
<Unit>None</Unit>
<Precision>0</Precision>
</parameter>
<parameter>
<Name>radm</Name>
<ParameterType>real</ParameterType>
</parameter>
<parameter>
<Name>radp</Name>
<ParameterType>real</ParameterType>
</parameter>
<parameter>
<Name>d_sour</Name>
<ParameterType>real</ParameterType>
</parameter>
<parameter>
<Name>srcpp</Name>
<ParameterType>string</ParameterType>
</parameter>
<parameter>
<Name>srcpp_spectrum</Name>
<ParameterType>Spectrum</ParameterType>
</parameter>

Parameter list

Constraints

<parameterRef parameterName="d_sour" />

<parameterRef parameterName="srcpp" />

<parameterRef parameterName="srcpp_spectrum”" />
</ParameterGroup>

Parameter groups

<conditionalStatement xsi:type="IfThenConditionalStatement">
<if>
<Criterion xsi:type="Criterion">
<expression xsi:type="AtomicParameterExpression">
<parameterRef parameterName="d_sour" />
</expression>
<conditionType xsi:type="ValueDifferentOf">
<Value>0</Value>
</conditionType>
<logicalConnector xsi:type="and">
<criterion xsi:type="Criterion">
<expression xsi:type="AtomicParameterExpression">
<parameterRef parameterName="srcpp" />
</expression>
<conditionType xsi:type="BelongToSet">
<Value>spectrol</Value>
<Value>spectro2</Value>
<Value>spectroN</Value>
</conditionType>
</criterion>
</logicalConnector>
</Criterion>
</if>
<then>
<Criterion xsi:type="Criterion">
<expression xsi:type="AtomicParameterExpression">
<parameterRef parameterName="srcpp_spectrum” />
</expression>
<conditionType xsi:type="IsNull" />
</Criterion>
</then>
</conditionalStatement>

About the interoperability

Let
$ 5 and S; be two services.
® /(S;) be the jth parameter of S;.
® 7(S;) (resp. O(S;)) be the set of input (resp. output) parameters of S;.
o ¢ (resp. c?’) the set of all constraints on Z(.S;) (resp. O(S;)) involving p’ .

Z(S;) O(S;)

About the interoperability

Let
$» S, and S, be two services.
® I (S;) be the jth parameter of S;.
® 7(S;) (resp. O(S;)) be the set of input (resp. output) parameters of S;.
o v (resp. v’) the set of all constraints on Z(.S;) (resp. O(S;)) involving p7.

Z(S;) O(S;)

So could follow S, into a workflow iff Vp*(S3) € Z(S2) Ipt(S1) € O(S1) such that:

® pF(S52) =p!(S1)

k
— pF(S,) satisfies CZ

l
, -
® pl(S) satisfies C7 7(Ss)

O(S1)
+ The equality is in the sense that parameters have same
+ UCDs
+ UTypes
+ SkossConcepts

+ Units

About the interoperability

Let
$» S, and S, be two services.
® I (S;) be the jth parameter of S;.
® 7(S;) (resp. O(S;)) be the set of input (resp. output) parameters of S;.
o v (resp. cv’) the set of all constraints on Z(.S;) (resp. O(S;)) involving p7.

Z(S;) O(S;)

So could follow S, into a workflow iff Vp*(S3) € Z(S2) Ipt(S1) € O(S1) such that:

® p*(S) =p'(S1)

l
® l(9) satisfies C%(Sl)

k
— p*(S,) satisfies CT(5y)

+ The equality is in the sense that parameters have same
+ UCDs
+ UTypes
+ SkossConcepts

+ Units

+ |If the difference is on units, the services are still compatibles: we can build a third service performing
the unit change, making interoperability possible.

Sketch of the integral solution

XML Schema
Model

E

XML Service
Description

Sketch of the integral solution

XML Schema
Model
Generating a dynamic
GUI for interacting
with service
XML Service

Description Automatic tools

Sketch of the integral solution

XML Schema
Model

XML Service

Description Automatic tools

Service description:

® p, R, p2 € Nand p3 is boolean.

9
9

Generating a dynamic
GUI for interacting
with service

if p1 >0 = p2 € {2;4;6} and p3 must be false.

if p1 <0 = p3 must be true.

Sketch of the integral solution

XML Schema
Model
Generating a dynamic
GUI for interacting
with service
XML Service
Description Automatic tools

Automatically Generated Client

Service description:

® p, eR, p; € Nand ps is boolean.

O ifp; >0 = ps €{2;4;6} and p3 must be false.

® ifp; <0 = p3 mustbe true.

Sketch of the integral solution

XML Schema
Model
Generating a dynamic
GUI for interacting
with service
XML Service
Description Automatic tools

Automatically Generated Client

Service description:

® p, eR, p; € Nand ps is boolean.

O ifp; >0 = ps €{2;4;6} and p3 must be false.
® ifp; <0 = p3 mustbe true.

Sketch of the integral solution

XML Schema
Model
Generating a dynamic
GUI for interacting
with service
XML Service
Description Automatic tools

Automatically Generated Client

Service description:

® p, eR, p; € Nand ps is boolean.

O ifp; >0 = ps €{2;4;6} and p3 must be false.

® ifp; <0 = p3 mustbe true.

Sketch of the integral solution

XML Schema
Model

XML Service
Description

Automatic tools

Generating a dynamic
GUI for interacting
with service

Generating the checking
algorithms for validating
inputs and outputs
(according to the description)

Sketch of the integral solution

XML Schema
Model

XML Service
Description

Automatic tools

Generating a dynamic
GUI for interacting
with service

Generating the checking
algorithms for validating
inputs and outputs
(according to the description)

Computing the interoperability
between all the available
services (by implementing
the previous algorithm)

Concluding remarks

With our formalism:

« Users can easily describe parameters and overall their constraints in
a unified way

« Descriptions are human readable and could be understood by
computers.

Interoperability graphs connecting services can be computed

a priori automatically

It is a consistent step towards a real and integrated interoperability in
the VO.

Concluding remarks

With our formalism:

« Users can easily describe parameters and overall their constraints in
a unified way

« Descriptions are human readable and could be understood by
computers.

Interoperability graphs connecting services can be computed

a priori automatically

It is a consistent step towards a real and integrated interoperability in
the VO.

Thank you for your kind attention.

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21
	Diapo 22
	Diapo 23
	Diapo 24
	Diapo 25
	Diapo 26
	Diapo 27
	Diapo 28
	Diapo 29
	Diapo 30

