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e Could work as an additional (and optional) component of UWS
e Could be profitable transversally into the VO context.

» Makes interoperability straightforward by checking automatically
if two (or more) services could be 'piped' into a given workflow

Our needs comes from the requirements of Theory Group: they
would like to deploy online codes with complex sets of in(out)put
data making them interoperable with databases (Sim-DB, spectra,
images,...).
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Building our solution

Our goal is

» Finely describe the set of parameters (inputs & outputs) of a given
service (in the largest informatics sense) in a way that

e Could be understood easily by humans
e Could be interpreted and handled by a computer

* Describe complex relations and constraints on and between

parameters
Input:

® Ropi>0pseN;pgelR
® ifp; €]0,7/2] then
ps € {2;4;6}, p3 € [—1,+1] and (|sin(p1)?* — p3|)*/? < 3/2.

® if py €]n/2, 7] then
0 < pa < 10, p3 > log(p2) and (py - p2) must belong to N.

Output:

* D4, Ps € R?
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e Could be understood easily by humans
e Could be interpreted and handled by a computer

* Describe complex relations and constraints on and between
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Existing products (ex. Apache Wadl) do not have this fine
required descriptive capabilities.

Y
o, == Our ideas lead to a working solution fitting our
requirements.



The working solution

 The grammar and syntax for building parameters description are
fixed in a XML schema:

http://code.google.com/p/vo-param/source/browse/trunk/model/src/schema/UWS2-V1.1.xsd



The working solution

 The grammar and syntax for building parameters description are
fixed in a XML schema:

http://code.google.com/p/vo-param/source/browse/trunk/model/src/schema/UWS2-V1.1.xsd
* |n practice:

« Service providers (unless they want) don't need to handle directly the XSD file

!

A GUI and an ad hoc command line framework will be provided for composing
the service description in few clicks

(This development is a part of a course that will take place during the first half 2012)



The working solution

 The grammar and syntax for building parameters description are
fixed in a XML schema:

http://code.google.com/p/vo-param/source/browse/trunk/model/src/schema/UWS2-V1.1.xsd
* |n practice:

« Service providers (unless they want) don't need to handle directly the XSD file

!

A GUI and an ad hoc command line framework will be provided for composing
the service description in few clicks

(This development is a part of a course that will take place during the first half 2012)

« With our protocol, one could easy express
- All the possible mathematical expressions involving parameters

- All the possible conditional sentences (provided they have a logical sense)



The working solution

 The grammar and syntax for building parameters description are
fixed in a XML schema:

http://code.google.com/p/vo-param/source/browse/trunk/model/src/schema/UWS2-V1.1.xsd
* |n practice:

« Service providers (unless they want) don't need to handle directly the XSD file

!

A GUI and an ad hoc command line framework will be provided for composing
the service description in few clicks

(This development is a part of a course that will take place during the first half 2012)

« With our protocol, one could easy express
- All the possible mathematical expressions involving parameters

- All the possible conditional sentences (provided they have a logical sense)

All the following examples are automatically generated from Java code using
the JaxB Api.



A working example : the PDR code

* Code modeling the micro-physics of interstellar clouds
(used to interpret HERSCHEL observations)

* Already Implemented in Astrogrid (CEA) in 2007.
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Obzerver sido

® |Incident radiation field | e State equation
® observer and back side | @ isochore (density)

® |SRF intensity ® isobare (pressure)

® Type of stellar spectrum] e specific user density profile
® distance of the star ° .

. e

Non trivial relationships between parameters
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® Grains properties
® R min and max
® Extinction properties




<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<UWS_Service xmlns="http://www.ivoa.net/xml/Parameter/v@.1"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalLocation="http://www.ivoa.net/xml/Parameter/v@0.1 UWS2-

V1.1.xsd">

<ParameterGroup>
<Name>RadiationFieldAndGeometry</Name>
<parameterRef parameterName="F_ISRF" />
<parameterRef parameterName="radm" />
<parameterRef parameterName="radp" />

<ServiceId>PDR_ONLINE</Serviceld>
<serviceName>PDR-1D</serviceName>

<Description>Description layer of the PDR code</Description>

<ParameterList>
<parameter>
<Name>F_ISRF</Name>
<ParameterType>integer</ParameterType>
<Unit>None</Unit>
<Precision>0</Precision>
</parameter>
<parameter>
<Name>radm</Name>
<ParameterType>real</ParameterType>
</parameter>
<parameter>
<Name>radp</Name>
<ParameterType>real</ParameterType>
</parameter>
<parameter>
<Name>d_sour</Name>
<ParameterType>real</ParameterType>
</parameter>
<parameter>
<Name>srcpp</Name>
<ParameterType>string</ParameterType>
</parameter>
<parameter>
<Name>srcpp_spectrum</Name>
<ParameterType>Spectrum</ParameterType>
</parameter>

Parameter list

Constraints

<parameterRef parameterName="d_sour" />

<parameterRef parameterName="srcpp" />

<parameterRef parameterName="srcpp_spectrum”" />
</ParameterGroup>

Parameter groups

<conditionalStatement xsi:type="IfThenConditionalStatement">
<if>
<Criterion xsi:type="Criterion">
<expression xsi:type="AtomicParameterExpression">
<parameterRef parameterName="d_sour" />
</expression>
<conditionType xsi:type="ValueDifferentOf">
<Value>0</Value>
</conditionType>
<logicalConnector xsi:type="and">
<criterion xsi:type="Criterion">
<expression xsi:type="AtomicParameterExpression">
<parameterRef parameterName="srcpp" />
</expression>
<conditionType xsi:type="BelongToSet">
<Value>spectrol</Value>
<Value>spectro2</Value>
<Value>spectroN</Value>
</conditionType>
</criterion>
</logicalConnector>
</Criterion>
</if>
<then>
<Criterion xsi:type="Criterion">
<expression xsi:type="AtomicParameterExpression">
<parameterRef parameterName="srcpp_spectrum” />
</expression>
<conditionType xsi:type="IsNull" />
</Criterion>
</then>
</conditionalStatement>
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So could follow S, into a workflow iff Vp*(S3) € Z(S2) Ipt(S1) € O(S1) such that:

® p*(S) =p'(S1)

l
® l(9) satisfies C%(Sl)

k
— p*(S,) satisfies CT(5y)

+ The equality is in the sense that parameters have same
+ UCDs
+ UTypes
+ SkossConcepts

+  Units

+ |If the difference is on units, the services are still compatibles: we can build a third service performing
the unit change, making interoperability possible.
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® p, R, p2 € Nand p3 is boolean.
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XML Schema
Model

XML Service
Description

Automatic tools

Generating a dynamic
GUI for interacting
with service

Generating the checking
algorithms for validating
inputs and outputs
(according to the description)

Computing the interoperability
between all the available
services (by implementing
the previous algorithm)




Concluding remarks

With our formalism:

« Users can easily describe parameters and overall their constraints in
a unified way

« Descriptions are human readable and could be understood by
computers.

Interoperability graphs connecting services can be computed

a priori automatically

It is a consistent step towards a real and integrated interoperability in
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Thank you for your kind attention.
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