

Challenges when Implementing the
Planck Virtual Image Service with

SIA 2

Walter Landry
IRSA/IPAC/Caltech

Wei Mi, Xiuqin Wu, Angela Zhang,
Peregrine McGhee, Steve Groom

Planck Mission

● The ESA Planck satellite (2009-2013)
was designed to observe the cosmic
microwave background over the entire sky.

● It has 72 different detectors covering
9 different frequencies.

● The detectors are single pixel sensors taking
data about 100 times a second.

● Coverage of the sky is provided by rotation of
the spacecraft.

Planck TOI Data

● The end result of this is a series of very large
tables (40 TB total) of TOI's (Time Ordered
Information)

● We store the tables in a special purpose file
format (HTM).

RA DEC MJD PSI SIGNAL

121.177 -21.5810 56036 -149.28 .0022

121.174 -21.5807 56244 9.808 -.0023

121.184 -21.5732 56401 -149.26 .0024

Planck Virtual Image Service

● We provide a stripped down TAP service to get
TOI's.

Minimap

● We also provide an image generation service.

Hires

● An image deconvolution service if you are
willing to wait for it.

SIA

● Version 1 of SIA accommodated this kind of
use case with support for Image Mosaicing
Services.

● I tried implementing the service with SIA 2
protocols, but ran into problems.

● To be concrete, I will make some
recommendations.

RANGE

● The backend HTM format makes it fast to
search for shapes defined by great circle lines.

● Cone searches are a little more work, but not
too bad.

● It would be some work to implement RANGE.

RANGE

● The backend HTM format makes it fast to
search for shapes defined by great circle lines.

● Cone searches are a little more work, but not
too bad.

● It would be some work to implement RANGE.
● RANGE is not necessary

– It does not give a square on the sky, but users
might think it does.

RANGE

● The backend HTM format makes it fast to
search for shapes defined by great circle lines.

● Cone searches are a little more work, but not
too bad.

● It would be some work to implement RANGE.
● RANGE is not necessary

– It does not give a square on the sky, but users
might think it does. Error-prone

RANGE

● The backend HTM format makes it fast to
search for shapes defined by great circle lines.

● Cone searches are a little more work, but not
too bad.

● It would be some work to implement RANGE.
● RANGE is not necessary

– It does not give a square on the sky, but users
might think it does. Error-prone

– Tiling the sky with polygons is almost as easy as
tiling the sky with ranges.

Recommendation

Remove RANGE

BOX

● The most common type of image that users
will want are rectangles centered on a
particular object.

BOX

● The most common type of image that users
will want are rectangles centered on a
particular object.

● SIA 1 only supported boxes and small circles.

BOX

● The most common type of image that users
will want are rectangles centered on a
particular object.

● SIA 1 only supported boxes and small circles.
● SIA 2 supports small circles, and polygons, but

boxes must be constructed by making a
polygon.

BOX

● The most common type of image that users
will want are rectangles centered on a
particular object.

● SIA 1 only supported boxes and small circles.
● SIA 2 supports small circles, and polygons, but

boxes must be constructed by making a
polygon.
– Creating a polygon is error-prone, especially near

the poles.

Recommendation

Add a BOX geometry with the same semantics
of ADQL

COORD

● There are a number of additional parameters
needed when generating images (e.g.
iterations, detectors).

● I, or someone else, could easily end up using
a keyword that has incompatible semantics
with a future revision of SIA (e.g.
DETECTOR).

● AccessData has the concept of COORD,
where services could define keywords willy-
nilly.

Recommendation

Add something like COORD to SIA 2 and
forbid any extra parameters

Syntax

● POS parameters require spaces
– With no URL-encoding (e.g curl's default), spaces

can cause the rest of the query to be silently
discarded.

Syntax

● POS parameters require spaces
– With no URL-encoding (e.g curl's default), spaces

can cause the rest of the query to be silently
discarded.

– Silent breakage is the worst kind of breakage.

Syntax

● POS parameters require spaces
– With no URL-encoding (e.g curl's default), spaces

can cause the rest of the query to be silently
discarded.

– Silent breakage is the worst kind of breakage.

● Polygon uses a straight list of numbers

Syntax

● POS parameters require spaces
– With no URL-encoding (e.g curl's default), spaces

can cause the rest of the query to be silently
discarded.

– Silent breakage is the worst kind of breakage.

● Polygon uses a straight list of numbers
– Polygons are actually a list of pairs of numbers

Syntax

● POS parameters require spaces
– With no URL-encoding (e.g curl's default), spaces

can cause the rest of the query to be silently
discarded.

– Silent breakage is the worst kind of breakage.

● Polygon uses a straight list of numbers
– Polygons are actually a list of pairs of numbers

– Error prone

Syntax

● POS parameters require spaces
– With no URL-encoding (e.g curl's default), spaces

can cause the rest of the query to be silently
discarded.

– Silent breakage is the worst kind of breakage.

● Polygon uses a straight list of numbers
– Polygons are actually a list of pairs of numbers

– Error prone

● Arrays of strings are not supported
– Planck users must be able to selectively choose a

set of detectors '27m', '28s', ...

Structure

● Virtual image generation services can depend
on input parameters that are best expressed
as a structure.
– Minimap and Hires have different parameters

Recommendation

Map key-value pairs to JSON5

JSON5

● JSON5 is a proposed extension to JSON that
aims to make it easier for humans to write and
maintain by hand

● JSON5 is a strict subset of ECMAScript 5
● Valid JSON is valid JSON5.

http://github.com/aseemk/json5

JSON5 Modifications to JSON

● Objects can be unquoted if they are valid
identifiers

● Objects and arrays can have trailing commas
● Strings can be single quoted (').
● Numbers can include plus signs
● Infinity is a valid number
● Comments are allowed
● ...

JSON5 Example

Mapping key-value pairs to JSON5

● Because JSON5 removes a lot of the
unnecessary baggage in JSON, it becomes
feasible to use JSON5 syntax within a URL.
– Put braces around the whole expression

– Replace ampersands '&' with commas ','

– Replace equals '=' with colon ':'

Mapping key-value pairs to JSON5

http://example.org/SIA2?TARGET='m101'&
POS=POLYGON:[[1,1],[1,2],[2,2]]&
BAND=[300,Infinity]&
TIME=['2012-01-01','2012-01-10']

Benefits

This preserves the simple syntax that users like.

The syntax scales to even very complex inputs

You could even post JSON5 documents wholesale

In principle, we can validate it with json schema
(http://json-schema.org/)

Benefits/Drawbacks

This preserves the simple syntax that users like.

The syntax scales to even very complex inputs

You could even post JSON5 documents wholesale

In principle, we can validate it with json schema
(http://json-schema.org/)

Not many implementations of JSON5 parsers

Javascript

C++

Objective C

Yet another way to interact with VO services

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34

