
VO-DML/Mapping
status update

Omar Laurino
SAO

VO-DML status
• CubeDM, DatasetDM, STC2

Models follow VO-DML rules

Feedback from modelers was positive: VO-DML
facilitates modeling, can inform decisions, and avoids
ad-hoc serialization specs for all formats

Feedback from modelers informed changes in spec

Translation scripts for Altova and Modelio UML Modelers

Consistent reuse of models

VO-DML status
• New WD circulated in late September

Document was decoupled from Mapping WD even more by
moving some sections to Mapping WD

Added introduction and renamed old introduction to Data
Integration

ReferencableElement —> ReferableElement

vodml-id SHOULD be human-readable according to the
grammar in Appendix D (?)

Model/ModelProxy

Model does not extend Package

Added version, Removed ivoid (?) in ModelProxy

VO-DML status
Clarifications:

Only models directly used must be imported

Uniqueness and mutability of DataType
instances

VO-UML attribute notation

Collection/Composition and Reference
sections (navigation of instances, life cycles)

Subsets/Redefines

Mapping WD
• New version in progress

changed title to “Mapping Data Model Instances to VOTable”

depends on possible changes to VOTable

feedback from Cube, Dataset, STC2 to be folded in:

Reference + Reference to external instances

Composition/Collection

might define some advanced ORM mappings

• Need to verify consensus on globally unique “prefixes”

Implementations
• VO-DML Mapper (Hawaii)

• Eclipse Domain Specific Language (Madrid)

• Python implementation - ~halfway through (Banff)

• Java (de-)serialization - complete (Heidelberg, TBU)

• VO-DML/XML to HTML, TAP Schema (Heidelberg)

• XMI —> VO-DML/XML translation scripts for Modelio, Altova,
Magic Draw

• (De-)serialization tutorial

Some lessons learned
• Continuous communication is key:

Modeling for interoperability is no simple feat

Critical issues must be identified early

Iterations must be much shorter than 6 months

Personal interaction works best

Common repository most useful (please use volute :))

• Consistency matters:

Models reuse makes standards light, interoperable, unambiguous

Consistent models are easier to read (by both software and wetware)

• Separation of Modeling/Serialization makes life easier for everyone, and is key for
interoperability

STC SpectrumDM

TOPCAT

Iris

STCLib

NewAPP

SEDLib

FITS

VOTable

NewFormatWithout
VO-DML NewDM

STC

SpectrumDM

TOPCAT Iris

STCLib

NewAPP

SEDLib

FITS

VOTable NewFormat

With
VO-DML

VO-DML
XML!

Mappings!
Drivers

NewDM

Mapping Data Model
instances to VOTable

A Tutorial

Disclaimer

The following examples assume the current
Mapping Document, i.e. the use of @utype.

Depending on the conclusions of the VOTable
discussion, examples might change syntactically,
but not semantically, as all options on the table

right now are perfectly equivalent.

Data Providers: how to
serialize instances

UML VODML/XML

Model

UML VOTable/Mapping

Instances

Model

UML
Class Diagram

Model
A VO-DML/XML document

unambiguously describes a Data Model
and defines portable identifiers for each

element in the DM

stc:SkyCoordinate

stc:SkyCoordinate.longitude
!

stc:SkyCoordinate.latitude
!

stc:SkyCoordinate.frame
!

src:Source
!

src:Source.name
!

src:Source.position

Instance

UML
Object Diagram

Instance

UML
Object Diagram

Simple instance example
Start of a VO-DML instance Instance’s type

Atomic attributes

Direct representation:
all values defined by PARAMs

Complex Instance example
Start of a VO-DML instance Instance’s type

Atomic attributes
Reference

Indirect representation:
one instance per row

through FIELDrefs

Structured Attribute

Backward Compatibility

Accommodates old- and new-style annotations
No name clashes

Multiple views in same serialization

Serialization patterns

Or Simply Use VODML
Mapper

Clients: how to deserialize
instances

(with DIY XPATH and Python)

Find all VO-DML instances

Find all VO-DML instances
of a specific type

De-serialize Direct
Representation

Find all VO-DML instances
of a specific type

De-serialize Indirect
Representation

Contexts
‘The position of a source’

vs
‘a position’

Summary
• Serialization (data providers) is straightforward if:

the model makes sense

the instances have a clear representation in terms
of the model

• Basic serialization patterns are simple and intuitive

• Advanced Object-Relational Mapping patterns are
possible if required (multiple tables with foreign keys,
etc.)

Summary
• Complete client implementation requires more effort,

but:

De-serialization strategy is model-agnostic

I/O libraries are so straightforward they can be
generated by a machine and reused as modules

• Most explicit syntax describes instances for both their
role and type

• Custom/old usages allowed without clashes

Tutorial

http://nbviewer.ipython.org/github/olaurino/
vo-dml/blob/master/MappingTutorial.ipynb

Thanks!

http://nbviewer.ipython.org/github/olaurino/vo-dml/blob/master/MappingTutorial.ipynb

