
Prototype of

an automated classification service:

a use case for KDD?

F.-X. Pineau1

1CDS, Observatoire Astronomique de Strasbourg

Santiago, 28th October, 2017

Motivations
Probabilistic cross-matches: take into account photometric data
to update purely positional posteriors

I Make two learning samples: real and spurious matches
I Use kernel smoothing to compute photometric likelihoods (add

astrometric priors Kernel Density Classification)

Meeting a few fellow
astronomers one-time needs:

I Separate stars from
extra-galactic sources

I e.g. XMM-GSC-2MASS
(A. Klutsch, P. Guillout)

I e.g. XMM-2MASS-WISE,
params: J-H, Fx/Fk, J-W1
(E. Sanchez, A. Nebot)

Credit: A. Nebot, E. Sanchez 1 / 22

Motivations

See 4. of KDD Charter: ”Defining requirements for
implementing and adding machine learning capabilities to
services”.

Process X-match outputs before downloading results

Use Kernel Smoothing to define complex query regions:
I upload a learning sample table (e.g. WD)
I ask the service for all sources having a likelihood

p(~x |wd) > 0.01
I likelihood p(~x |wd) computed by Kernel Smoothing
I (likelihood = local density / numer of points in the sample)

Use Kernel Density Classification to retrieve objects of given
class (see Kai’s talk at ADASS)

I build/upload learning samples
I ask for all sources having p(qso|~x) < 0.8

2 / 22

http://wiki.ivoa.net/bin/view/IVOA/IvoaKDD

Disclaimer

The prototype service supports two simple classification algo:
I k-nearest neighbours (kNN)
I kernel density classification (KDC)
I (could also support Mean Shift clustering, usefull?)

Fulfil a part of a classification process
I Does not support empty values
I No feature selection / dimentionality reduction
I Does not automatically select the “optimal” parameter(s)
I ...

3 / 22

The k-NN classification

Supervised method: need a learning sample (LS)
To classify one object:

I simply look at the k nearest neighbour in the LS
I assigned class is the most common in the neibhours

Pros
I No learning stage (lazy classification)
I Very easy to understand/interpret
I Very easy to implement and to mutli-thread
I Fast algorithms available (regular kd-tree for the Euclidean

distance)

Cons
I Curse of dimentionality: dimentionality reduction first
I Overfitting/underfitting: how to define the ”best” possible

value for k?
I Too simple

4 / 22

The Kernel Density Classification

Original paper: Richards et al. (2004)
I star/quasar (c1/c2) classification from ~x =(u-g, g-r, r-i, i-z)

Supervised method: requires a learning sample for each class ci
Direct application of the Bayes’ formula

p(ci |~x) =
p(ci)p(~x |ci)
n∑

j=1

p(cj)p(~x |cj)
(1)

I ci : object class
I ~x : vector in the parameter space
I p(ci): user defined priors

F iterate while priors 6= posteriors means
I p(~x |ci): likelihoods (p.d.f) computed by kernel smothings (KS)

F one KS by learning sample class

5 / 22

Histogramming vs KS in 1D

KS: density = sum of kernels centered around each data point

Normalized density = probability density function (p.d.f)

Credits: https://en.wikipedia.org/wiki/File:Comparison_of_1D_histogram_and_KDE.png

6 / 22

https://en.wikipedia.org/wiki/File:Comparison_of_1D_histogram_and_KDE.png

Kernel smoothing in 2D

KS: density = sum of 2D kernels (e.g. 2D Gaussians) centered
around each data point

Normalized density = probability density function (p.d.f)

Credits: Comaniciu, D. and Meer, P. (1997)

7 / 22

Kernels

Credits: https://en.wikipedia.org/wiki/File:Kernels.svg

We use only the multivariate Epanechnikov kernel
I finite support (unlike Gaussian kernels)
I theoretically the best (even if it is not that important) 8 / 22

https://en.wikipedia.org/wiki/File:Kernels.svg

Various Kernel Smoothings

Fixed bandwidth: all kernels have the same bandwidth

Variable/Adaptative bandwidth
I balloon estimator:

F 1 fixed bandwidth per density estimation
F bandwidth = distance to the measurement point’s kth-NN

I knn averaging: balloon estimator with a uniform kernel
I sample-point estimator:

F 1 bandwidth per data point in the LS
F data point bandwidth = distance to the data point’s kth-NN

9 / 22

KDC pros and cons

Pros
I Easy to understand, to interpret and to implement
I Natural probabilities in output
I Fast algorithms (based on kd-tree for exemple), easy to

multi-thread
I No randomness (but results depends on the choosen bandwidth)

Cons
I How to choose the ”best” bandwidth to avoid

under/over-fitting?
I Curse of dimensionality
I Not the current trend (random forest)?

Keep in mind that: the quality/representativity of the LS is
often more important than the chosen supervised algo!

10 / 22

KDC example

Input data

Unresolved SDSS sources
with a good photometric
quality;

Parameters: u − g , g − r ;

LS: 727 000 stars (red);
402 000 quasars (blue)

5 000 000 unknow sources

Disclaimer: raw data selection (no quality check), no tests to select
the best bandwidth, LS not representative of the data, ...

11 / 22

KDC example

Normalized local densities (p.d.f.) of both learning samples – quasar
(left) and star (right) – in the parameter space (u − g , g − r).

p(~x |qso) p(~x |star)

12 / 22

KDC example
Probability of being a quasar (left) and repartition of sources classes
as quasar/star (right).

p(qso|~x) =
p(qso)p(~x |qso)

p(qso)p(~x |qso)+p(star)p(~x |star)

Cyan: p(qso|~x) < 0.5
Pink: p(qso|~x) ≥ 0.5

13 / 22

Running the example
Using a script calling the REST HTTP API of the service

Create a new working dir on the server

> ./ classif.bash mkdir

SlHHdHKh8DRLUKUhniusua109p

Configure the script to use the created directory

> ./ classif.bash setdir SlHHdHKh8DRLUKUhniusua109p

Put data on the server (LS + to be classified)

> ./ classif.bash put qso qso.2d.csv

> ./ classif.bash put star star.2d.csv

> ./ classif.bash put data data.2d.csv

Give a name to parameters (optional)

> ./ classif.bash put labels ug ,gr

Start automated classifciation

> ./ classif.bash kdc samplepoint -k 100 \

-p qso :0.35\; star :0.65 -ho > res.2d.csv

It took 58 s to classify 5 000 000 sources (”training” included)
(the 15-NN classification took 10 s).

14 / 22

Classification algorithm

Basic algorithm using the sample-point estimator:

Structure creation

for learning sample classes (quasar , stars)

load classes objects

build a kd -tree

for each object

perform a k-NN query

put the object with computed extent in a M-tree

Classification

for all object to classify

for each learning sample class

get overlapping objects in the M-tree

compute the normalized local density

apply Bayes’ formula

15 / 22

Confusion matrix

Compute the confusion matrix in percentages

./ classif.bash kdc samplepoint -k 100

-p qso :0.35\; star :0.65 -cr

predicted quasar predicted star
actual quasar 80.7% 19.3%
actual star 11.6% 88.42%

A part of white dwarfs are classified as quasars

The LS should have been cleaned (magnitude errors, ...)

TODO: divide the learning sample in two to remove biases

The computation of the confusion matrix took 18 s (build trees on
1 100 000 objects and classify 1 100 000 objects).

16 / 22

The service REST HTTP API

Create/remove a new working directory on the server

POST/DELETE ${url}/mkdir

Create|replace/add/get/remove ls classes/data

PUT/POST/GET/DELETE ${url}/${dir}/ learningsample/${clas}

PUT/POST/GET/DELETE ${url}/${dir}/data

Perform an ‘ls’ on the learning sample

- possible outputs: txt/xml/json

GET ${url}/${dir}/ learningsample/ls

Create|replace/get/remove parameter names

PUT/GET/DELETE ${url}/${dir}/ header

17 / 22

The service REST HTTP API

Perform a k-NN classification

- output: csv

GET ${url}/${dir}/knn

GET ${url}/${dir}/knn/learningsample

- possible outputs: txt/xml/json

GET ${url}/${dir}/knn/confusionmatrix

Perform a Kernel Density Classification

GET ${url}/${dir}/kdc/${algo}

GET ${url}/${dir}/kdc/${algo}/ learningsample

GET ${url}/${dir}/kdc/${algo}/ confusionmatrix

Params: priors , likelihoods thresholds , ...

4 kernel smoothing algorithms

${algo} = knn|fixedbandwidth|balloon|samplepoint

18 / 22

Compatibility with DALI

Pure DALI URLs

GET ${url}/ availability

GET ${url}/ capabilities

GET ${url}/ examples # Facultative

VOTables responses available for errors and all

queries (except a GET returning a CSV file).

Response format depends on the HTTP header:

Accept: text/plain # For cmd line tools

Accept: application/json # For a web pages

Accept: application/xml # DALI compatible VOTable

Accept: text/xml # DALI compatible VOTable

19 / 22

About the service

Reuse CDS cross-match codes (mutli-threaded kd-tree and
M-tree)

Performances depends on
I the number of classes (only for KDC)
I the number of objects returned by kd/M-tree queries
I the smoothing algo (M-tree slower than kd-tree)

Support concurrent access (Read/Write locks)

Support failures during the writting phase (rollback to the
previous state)

Working directory removed if not used during 10 days

Implementation full Java using the Jersey framework (JAX-RS)

20 / 22

Come see me for a demo.

Thank you!

21 / 22

Richards, G. T., Nichol, R. C., Gray, A. G., Brunner, R. J., Lupton,
R. H., Vanden Berk, D. E., Chong, S. S., Weinstein, M. A.,
Schneider, D. P., Anderson, S. F., Munn, J. A., Harris, H. C.,
Strauss, M. A., Fan, X., Gunn, J. E., Ivezić, Ž., York, D. G.,
Brinkmann, J., & Moore, A. W. 2004, The Astrophysical Journal,
Supplement, 155, 257. astro-ph/0408505

22 / 22

astro-ph/0408505

