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Motivations
Probabilistic cross-matches: take into account photometric data
to update purely positional posteriors

I Make two learning samples: real and spurious matches
I Use kernel smoothing to compute photometric likelihoods (add

astrometric priors  Kernel Density Classification)

Meeting a few fellow
astronomers one-time needs:

I Separate stars from
extra-galactic sources

I e.g. XMM-GSC-2MASS
(A. Klutsch, P. Guillout)

I e.g. XMM-2MASS-WISE,
params: J-H, Fx/Fk, J-W1
(E. Sanchez, A. Nebot)
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Motivations

See 4. of KDD Charter: ”Defining requirements for
implementing and adding machine learning capabilities to
services”.

Process X-match outputs before downloading results

Use Kernel Smoothing to define complex query regions:
I upload a learning sample table (e.g. WD)
I ask the service for all sources having a likelihood

p(~x |wd) > 0.01
I likelihood p(~x |wd) computed by Kernel Smoothing
I (likelihood = local density / numer of points in the sample)

Use Kernel Density Classification to retrieve objects of given
class (see Kai’s talk at ADASS)

I build/upload learning samples
I ask for all sources having p(qso|~x) < 0.8
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http://wiki.ivoa.net/bin/view/IVOA/IvoaKDD


Disclaimer

The prototype service supports two simple classification algo:
I k-nearest neighbours (kNN)
I kernel density classification (KDC)
I (could also support Mean Shift clustering, usefull?)

Fulfil a part of a classification process
I Does not support empty values
I No feature selection / dimentionality reduction
I Does not automatically select the “optimal” parameter(s)
I ...
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The k-NN classification

Supervised method: need a learning sample (LS)
To classify one object:

I simply look at the k nearest neighbour in the LS
I assigned class is the most common in the neibhours

Pros
I No learning stage (lazy classification)
I Very easy to understand/interpret
I Very easy to implement and to mutli-thread
I Fast algorithms available (regular kd-tree for the Euclidean

distance)

Cons
I Curse of dimentionality: dimentionality reduction first
I Overfitting/underfitting: how to define the ”best” possible

value for k?
I Too simple
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The Kernel Density Classification

Original paper: Richards et al. (2004)
I star/quasar (c1/c2) classification from ~x =(u-g, g-r, r-i, i-z)

Supervised method: requires a learning sample for each class ci
Direct application of the Bayes’ formula

p(ci |~x) =
p(ci)p(~x |ci)
n∑

j=1

p(cj)p(~x |cj)
(1)

I ci : object class
I ~x : vector in the parameter space
I p(ci ): user defined priors

F iterate while priors 6= posteriors means
I p(~x |ci ): likelihoods (p.d.f) computed by kernel smothings (KS)

F one KS by learning sample class
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Histogramming vs KS in 1D

KS: density = sum of kernels centered around each data point

Normalized density = probability density function (p.d.f)

Credits: https://en.wikipedia.org/wiki/File:Comparison_of_1D_histogram_and_KDE.png
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https://en.wikipedia.org/wiki/File:Comparison_of_1D_histogram_and_KDE.png


Kernel smoothing in 2D

KS: density = sum of 2D kernels (e.g. 2D Gaussians) centered
around each data point

Normalized density = probability density function (p.d.f)

Credits: Comaniciu, D. and Meer, P. (1997)
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Kernels

Credits: https://en.wikipedia.org/wiki/File:Kernels.svg

We use only the multivariate Epanechnikov kernel
I finite support (unlike Gaussian kernels)
I theoretically the best (even if it is not that important) 8 / 22
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Various Kernel Smoothings

Fixed bandwidth: all kernels have the same bandwidth

Variable/Adaptative bandwidth
I balloon estimator:

F 1 fixed bandwidth per density estimation
F bandwidth = distance to the measurement point’s kth-NN

I knn averaging: balloon estimator with a uniform kernel
I sample-point estimator:

F 1 bandwidth per data point in the LS
F data point bandwidth = distance to the data point’s kth-NN
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KDC pros and cons

Pros
I Easy to understand, to interpret and to implement
I Natural probabilities in output
I Fast algorithms (based on kd-tree for exemple), easy to

multi-thread
I No randomness (but results depends on the choosen bandwidth)

Cons
I How to choose the ”best” bandwidth to avoid

under/over-fitting?
I Curse of dimensionality
I Not the current trend (random forest)?

Keep in mind that: the quality/representativity of the LS is
often more important than the chosen supervised algo!
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KDC example

Input data

Unresolved SDSS sources
with a good photometric
quality;

Parameters: u − g , g − r ;

LS: 727 000 stars (red);
402 000 quasars (blue)

5 000 000 unknow sources

Disclaimer: raw data selection (no quality check), no tests to select
the best bandwidth, LS not representative of the data, ...
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KDC example

Normalized local densities (p.d.f.) of both learning samples – quasar
(left) and star (right) – in the parameter space (u − g , g − r).

p(~x |qso) p(~x |star)
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KDC example
Probability of being a quasar (left) and repartition of sources classes
as quasar/star (right).

p(qso|~x) =
p(qso)p(~x |qso)

p(qso)p(~x |qso)+p(star)p(~x |star)

Cyan: p(qso|~x) < 0.5
Pink: p(qso|~x) ≥ 0.5
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Running the example
Using a script calling the REST HTTP API of the service

# Create a new working dir on the server

> ./ classif.bash mkdir

SlHHdHKh8DRLUKUhniusua109p

# Configure the script to use the created directory

> ./ classif.bash setdir SlHHdHKh8DRLUKUhniusua109p

# Put data on the server (LS + to be classified)

> ./ classif.bash put qso qso.2d.csv

> ./ classif.bash put star star.2d.csv

> ./ classif.bash put data data.2d.csv

# Give a name to parameters (optional)

> ./ classif.bash put labels ug ,gr

# Start automated classifciation

> ./ classif.bash kdc samplepoint -k 100 \

-p qso :0.35\; star :0.65 -ho > res.2d.csv

It took 58 s to classify 5 000 000 sources (”training” included)
(the 15-NN classification took 10 s).
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Classification algorithm

Basic algorithm using the sample-point estimator:

# Structure creation

for learning sample classes (quasar , stars)

load classes objects

build a kd -tree

for each object

perform a k-NN query

put the object with computed extent in a M-tree

# Classification

for all object to classify

for each learning sample class

get overlapping objects in the M-tree

compute the normalized local density

apply Bayes’ formula
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Confusion matrix

# Compute the confusion matrix in percentages

./ classif.bash kdc samplepoint -k 100

-p qso :0.35\; star :0.65 -cr

predicted quasar predicted star
actual quasar 80.7% 19.3%
actual star 11.6% 88.42%

A part of white dwarfs are classified as quasars

The LS should have been cleaned (magnitude errors, ...)

TODO: divide the learning sample in two to remove biases

The computation of the confusion matrix took 18 s (build trees on
1 100 000 objects and classify 1 100 000 objects).
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The service REST HTTP API

# Create/remove a new working directory on the server

POST/DELETE ${url}/mkdir

# Create|replace/add/get/remove ls classes/data

PUT/POST/GET/DELETE ${url}/${dir}/ learningsample/${clas}

PUT/POST/GET/DELETE ${url}/${dir}/data

# Perform an ‘ls’ on the learning sample

# - possible outputs: txt/xml/json

GET ${url}/${dir}/ learningsample/ls

# Create|replace/get/remove parameter names

PUT/GET/DELETE ${url}/${dir}/ header
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The service REST HTTP API

# Perform a k-NN classification

# - output: csv

GET ${url}/${dir}/knn

GET ${url}/${dir}/knn/learningsample

# - possible outputs: txt/xml/json

GET ${url}/${dir}/knn/confusionmatrix

# Perform a Kernel Density Classification

GET ${url}/${dir}/kdc/${algo}

GET ${url}/${dir}/kdc/${algo}/ learningsample

GET ${url}/${dir}/kdc/${algo}/ confusionmatrix

# Params: priors , likelihoods thresholds , ...

# 4 kernel smoothing algorithms

${algo} = knn|fixedbandwidth|balloon|samplepoint
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Compatibility with DALI

# Pure DALI URLs

GET ${url}/ availability

GET ${url}/ capabilities

GET ${url}/ examples # Facultative

# VOTables responses available for errors and all

# queries (except a GET returning a CSV file).

# Response format depends on the HTTP header:

Accept: text/plain # For cmd line tools

Accept: application/json # For a web pages

Accept: application/xml # DALI compatible VOTable

Accept: text/xml # DALI compatible VOTable
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About the service

Reuse CDS cross-match codes (mutli-threaded kd-tree and
M-tree)

Performances depends on
I the number of classes (only for KDC)
I the number of objects returned by kd/M-tree queries
I the smoothing algo (M-tree slower than kd-tree)

Support concurrent access (Read/Write locks)

Support failures during the writting phase (rollback to the
previous state)

Working directory removed if not used during 10 days

Implementation full Java using the Jersey framework (JAX-RS)
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Come see me for a demo.

Thank you!
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