
IVOA meeting Groningen, Netherlands
10/12/2019M. Baumann

T. Boch
F.-X. Pineau
P. Fernique
A. Nebot

Recent STMOC
developments at CDS :

support in MOCPy, STMOC
for VizieR tables

Space-Time Coverage
➢A spatial coverage (i.e. MOC)

with time information.

➢2D data-structure :

● List of time ranges, each
linked to a spatial
coverage.

● 1st axis: Time

● 2nd axis: Space (HEALPix
indices)

➢Why ST-MOCs ?

● Allows representing the time
evolution of a spatial
footprint, query it by time,
space, filter a catalog.

● Way of getting a light
footprint of the catalogs
(10, 100x less data
depending on the space &
time resolutions chosen) !

What’s new in MOCPy ?
14 in Time (~17 min),
7 in Space (27’)

14 in Time (~17 min),
5 in Space (~1.8 deg)

11 in Time (~19 hours),
7 in Space (~27’)

11 in Time (~19 hours),
5 in Space (~1.8 deg)

➢ST-MOCs of course !

➢API: new mocpy.STMOC
class

● Creation

● astropy skycoords/
single times
(range in the
future)

● spatial/temporal
resolution

● Logical operations
(e.g. intersection of the
XMM and Chandra ST-
MOCs to find
simultaneous
observations).

● Astropy table filtering

4

What’s new in MOCPy ?
- Serialize to FITS

- Query by Time/Space

DeCaLs full STMOC
queried by a time range

What’s new in MOCPy ?
~160 ST-MOCs generated from VizieR catalogs having time and
positions data (M.Baumann, T. Boch, A. Nebot)
http://alasky.u-strasbg.fr/footprints/STMOC/

http://alasky.u-strasbg.fr/footprints/STMOC/

6

Jupyter notebook
Demo (M. Baumann, A. Nebot)

DeCaLs full STMOC
queried by a time range

7

Implementation details
- All core code written in Rust system programming langage

* Compiler checks ensuring data race errors (RAII)
* Easy parallelism thanks to rayon library

- Example of how Rust handles concurrency (query_by_time
algorithm):

(1) Parallel iterators : divide time ranges into chunks
(2) For each chunk of ranges, filter those intersecting the

input ranges
(3) Parallel reduce: union of all the remaining spatial

footprints.

RustAlgorithm

Rust/Python PyO3 binder

1. Easy generation of
shared lib using
setuptools_rust package

core.so

python setup.py build

Pros :

- clean: no third C langage
- keep the benefits of Rust (no data
race errors) & Python GC
- PyO3 good doc, reliable solution,
can raise Python exceptions from
Rust side code.
- numpy wrapper available in
Rust for handling numpy arrays

2. Call core.so from python
side API code

Python API code

Rust core code

9

ST-MOC performance
- Worst case study :

* 100000 (position, time) tuples at a random sky location and time (in a 1 year frame)
* Time depth < 6 (~resolution 814 days), time ranges all merged into one... Loose of info
* Time depth > 15 (~resolution 4min30s) time ranges all disjoint, no grouping… No compression

- Compression factor gain w.r.t
the (space, time) resolution depths compared to
the original data used for building the ST-MOC

- Query by time performance w.r.t the
(space, time) resolution depths (union of
all the time ranges)

Some Useful Links

- GitHub: https://github.com/cds-astro/mocpy

* Links, Issue posting, Contributing instructions

- New documentation: https://cds-astro.github.io/mocpy/

- Test it: Space & Time coverage notebook:

https://mybinder.org/v2/gh/cds-astro/mocpy/master

- On PyPI: https://pypi.org/project/MOCPy/

 Binary wheels for 32/64 Linux, Windows and MacOS

pip install --upgrade mocpy

https://github.com/cds-astro/mocpy
https://cds-astro.github.io/mocpy/
https://mybinder.org/v2/gh/cds-astro/mocpy/master
https://pypi.org/project/MOCPy/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10

