VIOMASS: making MADCUBA VO-compliant

Ricardo Rizzo

Spanish Virtual Observatory

Centro de Astrobiología

IVOA Interop Meeting
October 2022

→ VIOMASS: concept and objectives

→ Data model, physical parameters and tables

→ Interoperability

→ First science case

→ To Do list: provenance and UCD

Current status and prospects.

MADCUBA

Overview of MADCUBA

- → Suite able to deal with large data cubes (although data should be on disk)
- → Java-based using imageJ infrastructure
- → Able to read several formats (FITS, GILDAS, CASA) and data models (IRAM, ALMA, Herschel, VLA, GBT, ...)
- → Built-in molecular line databases (CDMS, JPL, others)
- → Visualize and manipulate data cubes (baselines, smoothing, moments, ...)

SLIM

SLIM / AutoFit task

- → Visualize, analyze, and model spectroscopic data cubes
- → Automatic identification of molecular lines and RRLs
- → Derive line parameters. LTE fitting
- → Autofitting of one or many molecular lines
- Highly interactive. Fast and reliable graphics
- → Hosted and supported by CAB
- → Available at:

https://cab.inta-csic.es/madcu

Spectral Line Identification and Modelling (SLIM) in the MAdrid

Data CUBe Analysis (MADCUBA) package Interactive software for data cube analysis S. Martín^{1,2}, J. Martín-Pintado³, C. Blanco-Sánchez³, V. M. Rivilla⁴, A. Rodríguez-Franco⁵, and F. Rico-Villas³

European Southern Observatory, Alonso de Córdova, 3107, Vitacura, Santiago 763-0355, Chile e-mail: smartin@eso.org

- e-mail: smartin@eso.org
 2 Joint ALMA Observatory, Alonso de Córdova, 3107, Vitacura, Santiago 763-0355, Chile
 3 Centro de Astrobiología (CSIC-INTA) Ctra de Torreión a Aialvir km 4 Madrid Snain
- INAF-Osservatorio Astrofisico di Arcetri, Largo Enrico Fermi 5, 50125 Florence, Italy
 Facultad de Óptica y Optometría, Departamento de Biodiversidad, Ecología y Evolución, Universidad Complutense de Madrid,
 Facultad de Óptica y Optometría, Departamento de Biodiversidad, Ecología y Evolución,
 Avenida de arcos de Jalón, 118, 28037 Madrid, Spain
- Avenida de arcos de Jalón, 118, 28037 Madrid, Spain Received 20 June 2019 / Accepted 4 September 2019

SLIM | VIOMASS | First use | To Do | Conclusions

VIOMASS

First use

To Do | Conclusions

Virtual Observatory Integration Of

MADCUBA And SLIM Spectra

- Collaboration between MADCUBA and SVO groups
- → Aims: to enhance the exploitation of MADCUBA and to build a new VO tool
- How: by transforming MADCUBA/SLIM outputs as VO-compliant
- → Spectra as FITS files and tables as VOTables.

MADCUBA

VIOMASS

First use

To Do

Spectra data model

- → (Hybrid) FITS files containing both observed and modeled spectra.
- → Formed by a generic primaryHDU followed by a set of imageHDUs
- ImageHDUs always considered as cubes,
 even for a 2D images (a one-channel cube)
 or a single spectrum (a one-pix cube).

```
Dimensions
                         Type
                                   Cards
No.
       Name
                 Ver
                                                         Format
                    1 PrimaryHDU
     PRIMARY
                                      35
                                            (961, 1, 1, 1)
                    1 ImageHDU
                                                             float64
     SPEC1
                    1 ImageHDU
     SPEC2
                                            (75, 1, 1, 1)
                                                            float64
                    1 ImageHDU
                                            (23, 23, 984)
    CUBE 3
                                                            float64
# HDU 0
SIMPLE
                                  Standard FITS format
                                  Character data
BITPIX
                                  No image, just extensions
NAXIS
                                  There are standard extensions
EXTEND
# HDU 1
                                  Image extension
XTENSION= 'IMAGE
                                  array data type
BITPIX =
                                  number of array dimensions
NAXIS
                            961
NAXIS1
NAXIS2
NAXIS3
NAXIS4
```

1ADCUBA S

VIOMASS

First use

Do Conclusions

FITS headers

- Organized by categories:
 - 1. XTENSION and data type
 - 2. Physical units
 - **3.** Array
 - 4. Times and dates
 - 5. Telescope
 - 6. Observed and/or synthetic spectra
 - 7. Comments, logs, and END
- → Validity checked: FITS standard, VO-compliant
- Some mandatory keywords
- → Units explicitly exposed in header

```
XTENSION= 'IMAGE
                            / Type of extension
                            / Extension name
EXTNAME = 'DATA CUBE'
                           1 / Version of extension
EXTVER =
                         -64 / Array data type
BITPIX =
BSCALE =
                        1.0 / Scale
                        0.0 / Value corresponding to zero, in physical scale
BZERO =
                            / Unit of physical values
                        -1E8 /
BLANK
DATAMIN = -0.196652002633E-001
DATAMAX = 0.267310943455E-001 /
                          4 / Number of array dimensions
NAXIS =
NAXIS1 =
                         984 / Size of dimension 1
                          23 / Size of dimension 2
NAXIS2 =
NAXIS3 =
                          23 / Size of dimension 3
                          1 / Size of dimension 4
NAXIS4 =
CTYPE1 = 'FREQ
(4) Times and dates ------
                                    / HDU creation date
       = '2021-08-27T12:02:22.596'
                                    / Created by SLIM-AUTOFIT
ORIGIN = 'MADCUBA v 1.1
TIMESYS = 'UTC
DATE-OBS= '2017-07-25T02:59:33.655'
                                     Date observed
DATE-RED= '2021-06-24T00:00:00.000'
                                    / Date reduced
                                    / [s] Integration time
OBSTIME = 6.0000000000000E+02
       = '02:59:33.655'
                                    / Universal time at start
(5) Telescope -----
                                    / Radio telescope
TELESCOP= 'IRAM-30M '
INSTRUME= 'EMIR-0
                                    / Receiver
OBSMODE = 'PSW
                                    / Observing mode
(6) Observation and/or synthetic spectra ------
      = 'AFGL2298
                                      [deg] Right Ascension
       = 0.2850453750000E+03
                                    / [deg] Declination
       = 0.3763083333333E+01
RADESYS = 'FK5'
                                    / Equatorial coordinate system
                                    / Reference frame of spectral coordinates
SPECSYS = 'LSRK'
                                    / [rad] Telescope elevation
ELEVATIO= 0.264136238885E+002
(7) Comments, logs, and END ------
HISTORY Written by MADCUBA v0.5.0 on 2021/08/30-16:22:15
COMMENT Blah blah blah
```

END

Output tables

- → Source information: name, coordinates, offset
- Line/s used for fitting: name/s, formulation, quantum numbers, frequency/ies, energy/ies

- → Physical parameters: column density, n(H2),
 tau, Texc, velocity, line width, source size
- → All in single or multiple (TBD) VOTables
- → Careful definitions of column names
- → Inclusion of units associated with all columns

Outline | MADCUBA | SLIM | VIOMASS | First use | To Do | Conclusions

Output tables

VIOMASS

First use

Interoperability

- → Spectra successfully opened by CASSIS
- Cubes visible within Aladin, with channels in the 'movie' mode
- Tables recognized by Topcat
- → Not all features tested yet

First science case

- → astro-ph 2210.09774 (Oct 18 2022)
- → Discovery of Si-bearing molecules in eta Carina
- → Si, SiS and SiN found in twelve clumps
- Other molecules: 13CO, 13CN
- → Column densities and abundances determined by the VO-compliant MADCUBA output
- → SiO formed by shocks. Complex chemistry, grain destruction and formation.

Figure 3. Velocity-aligned spectra of the Si-bearing

molecules detected in clump F. The SiN transitions at

Figure 4. Comparison of abundances of SiO and SiS mea-

sured in η Car (this work) and other star types with con-

To do list

- History logs and provenance
- Testing on interoperability
- → UCDs (semantics)
- → Fine tuning definitions for the output tables
- → Documentation and tutorials.

First use

To Do | Conclusions

Concluding remarks

- → MADCUBA and SLIM are powerful radio astronomy tools
- → Efforts are being made to convert their output in VO-compliant
- → Spectra as hybrid FITS and tables as VOTables

- → Interoperability being tested with good results
- → First succesful science use
- To do: provenance, interoperability, UCD, fine tuning, documentation.