Radio Time Series discovery and access use cases

- In alphabetic order: François Bonnarel, Mireille Louys, Laurent Michel, Marco Molinaro, Ada Nebot
- Acknowledge: Radio IG, TD IG, DM WG, DAL WG discussions

What is a time series for us?

- « some astronomical data » varying with time
- Time is independant variable
 - Light curve, Velocity curve
 - Multi-band light curve
 - Sequence of images (« movie »???)
 - Dynamic spectrum
- Let's restrict to radio light curves

Use cases (1)

J/other/PASA/27.64/pulsars

Parkes Radio Telescope pulsar timing (Weltevrede+, 2010)

Parameters and post-fit RMS (tables 1 and 2 of paper) (168 rows)

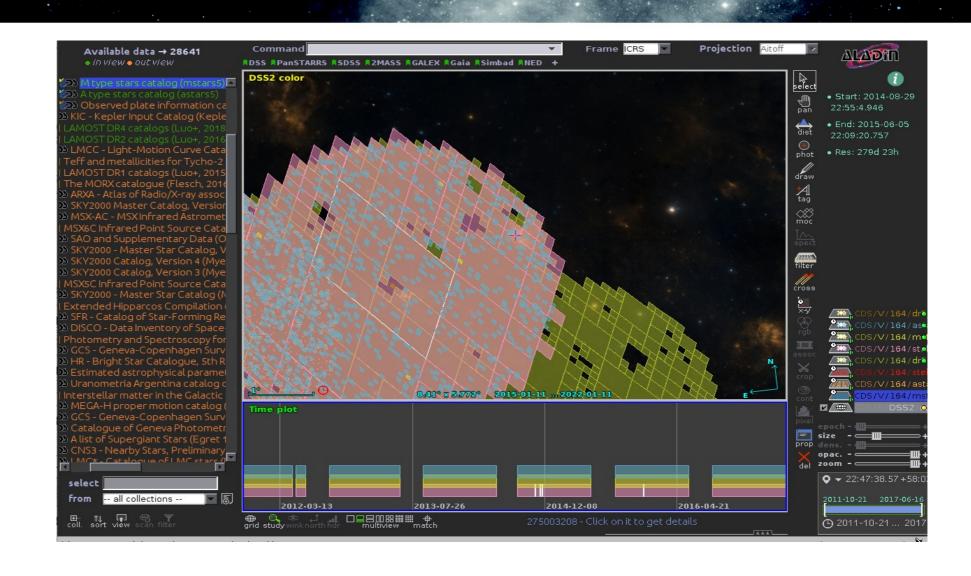
Post annotation

start AladinLite

plot the output

query using TAP/SQL

Full	RAJ2000	DEJ2000	n	PSR	M	Per	DM	log(dE/dt)	rms	S08	Simbad	_RA	DE
	"h:m:s"	"d:m:s"				ms	pc/cm3	[<u>10-7W</u>]				deg	deg
△▼	△▼	△▼	△▼	△▼	ΔΨ	ΔΨ	ΔΨ	ΔΨ	△▼	ΔΨ	△▼	△▼	△▼
1	05 43 09.6500	+23 29 06.100		J0543+2329		246.0	78	34.6	1.1	S08	Simbad	085.79021	+23.48503
2	06 14 17.2500	+22 30 37.400		J0614+2229		335.0	97	34.8	3.3	<u>S08</u>	<u>Simbad</u>	093.57187	+22.51039
<u>3</u>	06 27 44.0000	+07 06 00.000		J0627+0705		475.9	138	34.0	0.4	<u>S08</u>	<u>Simbad</u>	096.93333	+07.10000
4	06 59 48.1340	+14 14 21.500		J0659+1414	<u>M</u>	384.9		34.6	3.2	<u>S08</u>	<u>Simbad</u>	104.95056	+14.23931
<u>5</u>	07 29 16.4500	-14 48 36.800		J0729-1448	_	251.7	92	35.4				112.31854	
	07 42 49.0580	-28 22 43.760		J0742-2822	<u>M</u>	166.8	74	35.1		_		115.70441	-28.37882
_	07 45 02.3000	-53 51 22.000		J0745-5353		214.8	122	34.0		_		116.25958	
_	08 21 00.0000	-38 24 00.000		J0821-3824		124.8	196	34.7				125.25000	-38.40000
	08 34 16.3000	-41 59 51.000		J0834-4159		121.1	240	35.0				128.56792	-41.99750
	08 35 20.6553	-45 10 35.155		J0835-4510	<u>M</u>	89.4	68	36.8		_		128.83606	-45.17643
	08 55 36.1800	-46 44 13.400		J0855-4644		64.7	238			_		133.90075	-46.73706
	08 57 55.1590	-44 24 10.320		J0857-4424		326.8	184	34.4		_		134.47983	-44.40287
_	09 01 40.1200	-46 24 48.500		J0901-4624		442.0		34.6		_		135.41717	-46.41347
	09 05 51.9220	-51 27 48.710		J0905-5127		346.3	196	34.4		_		136.46634	
	09 08 35.5300	-49 13 06.500		J0908-4913		106.8	180	35.7		_		137.14804	
	09 40 58.2200	-54 28 40.600		J0940-5428		87.5		36.3		_		145.24258	
	09 54 06.0400	-54 30 53.500		J0954-5430		472.8	200	34.2		_		148.52517	-54.51486
	10 03 21.5800	-47 47 02.000		J1003-4747		307.1	98	34.5		_		150.83992	-47.78389
<u>19</u>		-57 19 12.800		J1015-5719		139.9	279	35.9		_		153.90817	-57.32022
<u>20</u>		-58 19 01.150		J1016-5819		87.8	252	34.6				154.05042	-58.31699
<u>21</u>	10 16 21.1600	- 58 57 12.100		J1016-5857		107.4	394	36.4	3.2	S08	<u>Simbad</u>	154.08817	-58.95336


- + I have a standard catalogue
- of pulsars
- + I want to attach radio

 TimeSeries of these pulsars
 to catalogue records
- + we could use LINK or
- DataLink to do that
- + → source driven discovery

Use cases (2)

- + I have an FRB VoEvent or SCS (from a database)
- + I look for counterparts around the same position and time
 - + we can use STMOC features to discover data in these ranges
 - + we can use SCS (with TIME) to discover data in these ranges
 - + we can query ObsTAP to discover datasets covering these constraints
- + I look for counterparts around the same position and time (+ specific time frame + period)
- + ObsTAP with TimeDomain ObsCore extension to discover TimeDomain datasets
- + ObsCore based discovery

Use cases (2)

Use cases (3)

- + I want to discover all TimeSeries available for some spectral domain and some position
 - + I send the same query to all DataSetSAP services
 - + DataSetSAP is similar to SIA2.0 but not restricted to images
 - + HAS parameter DPTYPE=TimeSeries settled
- + May have specific TimeSeries Parameters allowed (constraining TimeSeries ObsCore extension ... eg cadence, period, etc.)
- + ObsCore based discovery

Mixed use case

- The TimeSeries is attached to the source
- and both the source parameters and (let's say) the lightcurve obscore description are in a database
- (case of an exoplanet and companion star for example)
- → We may want to discover by constraints on both timeseries characterization and « spectral type » or « proper motion »
- Store two tables in the TAP service and make joins or add star parameters to basic ObsCore

Access the data

- Full retrieval from DataLink or main source/Obscore table
- Excerpt/transform of the data via SODA-next
 - Selection of data points in a given time range
 - Extraction of one single scalar curve from a multi-scalar one
 - Reduction of dimensionality (cube with time axis → TimeSeries)
 - Changing TimeScale or Time representation

IVOA Note

(Bonnarel, Louys, Michel, Molinaro, Nebot)

- IVOA note: what standards to implement, what changes to make in the standards
- first published in 2018
- New version in 2021
- Implementation note + Decisions about the changes to make in DAL standards in the next months
- Github:

https://github.com/ivoa/TimeSeriesDiscoveryAndAccess

TimeSeries Discovery and Access DAL procedure

Version 1.0

IVOA Note 2021-04-30

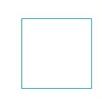
Working group

DAL

This version

http://www.ivoa.net/documents/TimeSeriesDiscoveryAndAccess1/20210430

Latest version


http://www.ivoa.net/documents/TimeSeriesDiscoveryAndAccess1 Previous versions

Author(s)

François Bonnarel, Mireille Louys, Laurent Michel, Marco Molinaro, Ada Nebot

Editor(s)

François Bonnarel, Marco Molinaro

ObsCore based discovery

ObsCore DM Proposed Extension for time series and radio visibilities

Mireille Louys,

F. Bonnarel, Ada Nebot, L.Michel following discussions with Time domain IG and Radio

CDS and Observatoire de Strasbourg ICube Laboratory, Strasbourg University

Louys et al , 2020 November interop

→ what do you need for discovery of radio
TimeSeries ?

Time description in ObsCore

Obscore + TObs	Definition	Utype/datamodel path	UCD	Units	Mandatory/ optional	
t_min	Time start of the sequence	Char.TimeAxis.Coverage.Bounds.Limits.LoLim	time.start;obs.sequence	S	man	grey cell = current Obscore keywords
t_max	Time end of the sequence	Char.TimeAxis.Coverage.Bounds.Limits.HiLim	time.end;obs.sequence	s	man	
t_exptime	Exposure time (sum of multiple exposures)	Char.TimeAxis.Support.Extent	time.duration;obs.exposure	s	man	
t_exp_min	minimal length of time sample (min integration time)	Char.TimeAxis.Sampling.Extent.lo Lim	time.duration;obs.sequence;stat.min.	s	opt	add every parameter
t_exp_max	maximal length of time sample (max integration time)	Char.TimeAxis.Sampling.Extent.hi Lim	time.duration;obs.sequence ;stat.max		opt	in blue cells to <i>ivoa.t_obs</i>
%time space between 2	time samples / cadence					table
t_delta_min	minimal length of time interval between 2 observations / cadence (min)	Char.TimeAxis.Sampling.Period.lo Lim	time.interval;obs.sequence; stat.min.	S	opt	
t_delta_max	maximal length of time interval between 2 observations / cadence (max)	Char.TimeAxis.Sampling.Period.hi Lim	time.interval;obs.sequence; stat.max	S	opt	
t_resolution	minimal interpretable time difference	Char.TimeAxis.Resolution.Refval				
t_xel	nb of time stamps in the series	Char.TimeAxis.numBins	meta.number	null	man	

Representation: next step to discuss

Simple Light curve serialisation :

Nebot et al, 2020

- DAL or DM task to push it ?
- Alternatively, for more complex

TimeSeries: Cube DM/Mango

- + DM annotation/serialisation
 - → see last DM Workshop and prototype it!
- → Output format for TimeSeries VO services

Time Series: Annotation of light curves in VOTable

Version 0.1

IVOA Note 2020-04-03

Working group

Not Applicable

This version

http://www.ivoa.net/documents/TimeSeries/20200403

Latest version

http://www.ivoa.net/documents/TimeSeries

Previous versions

Author(s)

Ada Nebot, Francois Bonnarel, Mireille Louys, Laurent Michel,

Dave Morris, Jesus Salgado Editor(s)

Ada Nebo

Abstract

This document describes a proposal to annotate in a VOTable time series data. It is limitted to the most common type of time series in astronomy: light curves, but it can be extended to other type of time series data easily (e. g. radial velocities and positions). The annotation reuses elements of existing Data Models when possible and defines a set of new elements. This document can be taken as a test case of a more general purpose model.

Eg: Can we « build » standardized TimeSeries in tools from catalog data?

- SCS or TAP services response may contain raws of catalogs with timestamps
- SCS-next has now a TIME attribute to select in ranges
- Catalogs in VOTable now provide TIMESYS element for the time frame
- Photometric calibration and system may also be provided in a standard way.
- → A client may provide a functionality to treat such service responses as if they were timeseries
- → moreover these « on the fly timeseries » may be exchanged with other tools (SAMP, Notebooks) or stored for the future