
International
Virtual
Observatory

Alliance

The Observation Core Components Data
Model

Version 1.0-20100517

IVOA Working Draft May 19, 2010

This version:
http://www.ivoa.net/Documents/Notes/WD-ObsCoreDM-0.2-20100517.pdf

Latest version:
http://www.ivoa.net/Documents/latest/ObsCoreComponentsDM.html

Previous versions:
0.1

Editor(s):
Mireille Louys, François Bonnarel

Authors:
Mireille Louys, François Bonnarel, Alberto Micol,
David Schade, Anita Richards, Patrick Dowler
Jesus Salgado, Doug Tody,
Igor Chilingarian, Daniel Durand

Abstract

This document discusses the definition of the core components of the Obser-
vation data model that are necessary to cover data discovery use-cases when
querying data centers. It exposes the use-cases to be carried out, explains
the model and provides a table of fields to be implemented in a Table Access
Protocol (TAP) TAP service. Such a small model is easy to understand and
implement by data providers that wish to publish their data into the Virtual

1

 http://www.ivoa.net/Documents/Notes/WD-ObsCoreDM-0.2-20100517.pdf
http://www.ivoa.net/Documents/latest/ObsCoreComponentsDM.html

Observatory.

Status of this document

This document has been produced by the Data Model Working Group. It
organises the metadata attached to an astronomical observation and develops
an abstract view in the Observation data model Core Components part. On
the other hand it provides a full guideline to implement such a model in the
Table Access Protocol framework.

Due to the DM and DAL aspects of this document, this will be reviewed
by both Working Groups.

Acknowledgements

This work has been partly funded by Euro-VO AIDA project that we ac-
knowledge here. CADC implementations ??? ESO implementation prog?

2

Contents

3

1 Introduction

Modeling of observational metadata has been a long term activity in the
IVOA since it was created in 2002. Various modeling efforts like Resource
Metadata, STC, Spectrum data model, and Characterisation data model,
have been recommended and are currently used in IVOA services and appli-
cations. This work now reaches a mature state where we need to homogeneise
the various description and access ways to discover, retrieve and/or analyse
any kind of data products resulting from an astronomical observation. How-
ever data model implementation among data providers is still poorly repre-
sented except for the most common data model fields used to publish a data
collection in the Registry (based on the Resource metadata DM) or in proto-
cols like the well supported SSA or SIA. This situation is also reinforced by
more technical problems: serialisation (pure XML or Utypes), and protocols
for metadata access were not always available for practical implementation
of these data models. The emergence of the TAP protocol allows now to use
a generic method for all kind of datasets and models. Definition of TAP ser-
vices implementing the Core of Observation data model for various archives
will provide a unified discovery interface to a large set of heterogeneous data
archives of images, cubes, spectra and catalogs. The goal of the current
note is to propose a subset of Utypes of the overall Observation data model
currently under construction that enables to support a full set of use-cases
collected from the community, and to show how it can be implemented as a
TAP service. Such a simple and general service should be easily implemented
by any data provider, for any kind of data.

The document is composed as following: Section 2 presents the use cases
collected within the astronomical community by the IVOA Uptake com-
mittee. Section 3 identifies useful features for our purpose in the Obser-
vation/Characterization data model and defines the ObsCore data model.
Section 4 specifies the required data model fields as they are used in the
TAP service: table names, column names, column datatype, utype from the
Observation Core components data model, and required units. Section 5:
TBD. Section 6 is the conclusion. Appendix A contains the Use-cases gath-
ered from the community and listing various possible search criteria in the
data discovery process. ??? Appendix B provides examples of Obs/TAP
queries and describes implemented services.

4

2 Use cases

We first focused on data discovery use-cases, aimed at finding observations in
the VO domain, by broadcasting the same query to a bunch of data centers
or to all VO subscribers.

Ultimately we need to provide data providers with a list of item and
features that they could easily map to their database system, in order to
answer to the defined queries.

The goal is to be simple enough to be implementable, and not to be
exhaustive on all exotic data sets.

The main features of these use-cases are mainly: - multi-wavelength
search - multi-types of data (spectrum, cube , catalogs) Refined or advanced
searches may include extra knowledge stemming from astronomical objects
classification and would need to extract results from catalogs, possibly by
using fine sub-queries.

Here we list just one example in each use-case category but the full list
is available in Appendix B or at http://....

2.1 Discover imaging data of interest

Use-Case 1.2: Let me input a list of RA and DEC coordinates and show me
spatially coincident data that satisfies

1.2.1 Data type is Imaging or spectroscopy data
1.2.2 Includes one or more of the RA,DEC
1.2.3 Includes both a wavelength in the range 5000-900 angstroms AND an

X-ray image (AND=SERVREQ)

2.2 Discover Spectral data of interest

Use-case 2.2: Show me a list of all data that satisfies

2.2.1 DataType=Spectrum
2.2.2 Wavelength includes 6500 angstroms
2.2.3 Spectral Resolution better than 15 angstroms
2.2.4 Spatial Resolution better than 2 arcseconds FWHM
2.2.5 Exposure Time ¿ 3600 seconds
2.2.6 Data Quality = Any

2.3 Discover Data cubes of interest

Use-Case 3.4 : Show me a list of all data that satisfies

5

3.4.1 DataType=cube
3.4.2 RA includes 16.00
3.4.3 Dec includes +41.00
3.4.4 Wavelength includes 6500 angstroms
3.4.5 Wavelength includes 4000 angstroms
3.4.6 Spectral resolution better than 5 angstroms
3.4.7 Exposure time more than 3600 seconds
3.4.8 Data Quality= Fully Calibrated

2.4 Discover general data of interest

Use-Case 5.3 : Show me a list of all data that satisfies

5.3.1 DataType=Imaging or Spectroscopy
5.3.2 RA includes 16.00 hours
5.3.3 DEC includes +41.00 degrees
5.3.4 SDSS images and spectra AND CFHTLS images and spectra

A common denominator to most of the use-cases defined here is the set
of physical features in terms of spatial, spectral, temporal, and photometric
properties? This is well covered by the Characterisation Data Model and can
be re-used as a package within the Observation DM. The Characterisation
DM as well as the Spectrum DM define lists of Utypes [?] that are ready to
use for our cases. Access and identification metadata, defined and summa-
rized in the SSA Utype list [?], provide the necessary mechanism to identify
and retrieve a data set.

2.5 How to answer these use cases?

The idea is to build up a VO interface to allow data providers to simply
describe their observation metadata stored in DBMS systems and provide
a query mechanism for users to discover, then retrieve the data products.
The currently developed TAP protocol offers the appropriate implementa-
tion layer. Here we specify the data model and the relational model that
TAP services must implement. The strength of this approach is that users
will be able to submit the identical query to all TAP services that implement
the ObsCore model and get back uniform results. This can be described in a
standard way in the TAP_SCHEMA!.Queries to this database may be done in
all cases by ADQL as well as other query languages supported by individual
services (for example using PQL when that standard is finalised and imple-
mented). The generation of Utypes from a data model is not described here.

6

We assume it will be consistent with the Utype definition WD (Louys et al,
2009).

7

3 The Observation Core Components Data Model

Let us just sketch out how the core components fit into the scope of the
general Observation Data Model and list which classes and attributes will be
used to support the above use-cases.

3.1 The context and history of metadata modeling in
the VO

The Observation data model project appeared at the first Data Model fo-
rum held at the May 2003 IVOA meeting in Cambridge,UK. Rapidly some
main classes appeared to be necessary to organize the metadata: Dataset
or Observation, Identification, Physical Characterisation, Provenance (either
instrumental or software) and Curation. A description of the early stages of
this development can be found in [?],(Observation IVOA note). In parallel
an effort dedicated to spectra was lead by the DM Working group. The Spec-
trum data model represents all necessary metadata for one specific type of
observational data: simple spectra. For the overall Observation Data Model,
the physical characterization has been identified to be on first priority already
in 2004. It was completed as an IVOA recommendation after 4 years of dis-
cussion which included computer scientists, astronomers and data providers
under the lead of J.Mc Dowell.

3.1.1 Characterisation data model

The Characterisation data model organizes metadata as a 3D matrix span-
ning independently the various physical axes (spatial, spectral, time, flux or
whatever observable quantity), four levels of granularity, and some features
or Properties (coverage, resolution and sampling). This scheme allows to
support selection of data sets for data discovery as well as data analysis.

3.1.2 New efforts

While the Characterisation data model was setting up a logical framework to
describe the properties/features of each observation in the VO, the approach
here is more pragmatic and leads to a simple implementation data model,
and its protocol application using the emerging TAP/SCHEMA framework.
In the mean time, the Generic Data set/Observation data model is currently
developed integrating Curation and DataID description borrowed from the
Spectrum Data model with a detailed description of the Provenance (instru-
mental and computational) for observed datasets. The consistency between

8

the two efforts is a major goal, and will be warranted by defining the Core
components to be re-usable at the more general level.

3.2 Observation data model Core Components and at-
tributes definition

To fulfill our goal of serialization of the ObsCore data model in TAP we
have to select the most useful subset of utypes necessary for our use cases.
Most of them do actually belong to characterization with the exception of
the contentType, the target name, and the collection name.

From all the metadata covered and described in the full Observation data
model, only a small part is needed to support data discovery in a regular
and efficient manner. We then concentrate first on the definition of core
components of the Observation data model that will be used to support the
use-cases described above. The Observation Core component data model is
summarized in a UML class diagram below; this is the logical data model.
The implementation of such a model is described in Section ??.

Here we list all the metadata used as selection criteria in the listed use-
cases and in the response data center might give back.

3.2.1 UML description of the model

The data model for observation is organised according to some Object Ori-
ented Programming principles in order to define unique and consistent con-
cepts , as re-usable classes. UML helps to sketch out the class organisation
as shown in Fig. TODO. ??. This class diagram covers all classes used in
the context of the Observation Core components Model. The Characteri-
sation classes, describing how the data span along the main physical axes,
are used here partly, and only the attributes relevant to this modeling effort
are shown here. This is also the case for the DataID and Curation classes
extracted from the Spectrum/SSA data model where only a subset of at-
tributes are necessary for data discovery.We consider for now that we use
Characterisation classes only down to the Support level.

Encoding the coordinates attributes depends on the nature of each Char-
acterisation axis and will be described in detail in the Full Observation DM.
The Utypes shown on both tables provide the inner structure of each class
attribute. Therefore we do not develop the SpatialAxis, TimeAxis classes on
the diagram , for the sake of clarity.

9

3.2.2 Type of Observation

The model defines a data product type attribute for the Observation Class. It
is the type of observation the user queries for or selects for retrieval. This is
coded as a string that conveys a general idea of the content and organisation
of a dataset. We consider a coarse classification of the types of dataset
interesting for science usage, covering images, cubes, spectra, light curves,
SED, etc... The Observation.DataProductType attribute takes its string
value in the following set, organized according to up to 4 levels of granularity:

• Image

– Image.2DSkyImage
– Image.2D any 2D image: weight maps, bad-pixel map, etc: TBD
– Image.Longslit 2D image for a long slit spectrum with one axis mapped on

wavelength
– Image.Cube 2D+ extra dimension(s)
– Image.Cube.Spectral
– Image.Cube.Time
– Image.Cube.Polarization

• Spectrum

– Spectrum.1D
– Spectrum.SED
– Spectrum.Polarisation (to be discussed)...
– Spectrum.Echelle
– Spectrum.IFU (TBD)

• TimeSeries

– TimeSeries
– TimeSeries.LightCurve flux variable with Time
– TimeSeries.RadialVelocity (TBD)

• Visibility

– Visibility.Image
– Visibility.Cube

• EventList

This provides a hierarchy of possible data product types that is stated
here but can be extended by data providers in the future depending on new
kinds of data and search procedures.. We give the possibility here for data
provider to extend this classification and return an extend data product type.
However, this should start with some element given in the hierarchy above
and should not be redundant with any already existing string defined above.

10

3.2.3 Calibration level

It is a convention we suggest to use to classify the different possible calibration
status of an observed dataset. This is up to the data provider to consider
how to map his own internal classification to the suggested scale here.

Following examples can help to find the most appropriate value for the
calibLevel attribute.

• Level 0:
raw instrumental data, possibly in proprietary internal provider format,
that need specific tools to be handled.

• Level 1:
Instrumental data in a standard format(FITS, VOTable, SDFITS, ASDM,
etc. The data may or may not be calibrated. Standards tools can han-
dle it.

• Level 2:
Science ready data , with instrument signature removed, and calibra-
tion status defined on all physical axes.

• Level 3:
Enhanced data products like mosaics, improved co-added image cubes,
resampled or drizzled images, etc. spectra with calibrated velocity
axis at a particular line rest frequency. In such case, the improved
calibration procedure is described by the data provider in some way,
progenitors of such a data product can be identified into the reduction
pipeline.

This classification is simple enough to cover all regimes. Data providers
will adjust the mapping of their various internal levels of calibration to this
general frame, with the knowledge of the PIs for each project.

11

4 Implementation of ObsCore in a TAP Ser-
vice

The ObsCore model will be implemented within Table Access Protocol (TAP)
services such that all valid queries can be executed unchanged on any ser-
vice that implements the model. Here we specify an explicit mapping of the
model to relational database tables; in the context of TAP this means we
are specifying the logical tables as described in the TAP_SCHEMA and VOSI-
tables metadata content. This does not necessarily imply that the underlying
database will have the identical structure, but in most cases the relationship
between TAP_SCHEMA description and the underlying tables is straightfor-
ward.

schema_name table_name description
ivoa ivoa.ObsCore ObsCore 1.0

Table 1: TAP underscore SCHEMA.tables description of the ObsCore model

Tables ?? and ?? provides the primary information needed to describe
the ObsCore model in terms of TAP_SCHEMA tables and columns. Additional
standard content for the individual columns is specified below. See Appendix
C for a usable SQL script that inserts the standard TAP_SCHEMA content.

4.1 Data Product Type

• column_name: dataproduct_type
• datatype: adql:VARCHAR
• size: implementor decides
• utype: Observation.DataProductType
• UCD: ?
• principal: 1
• indexed: implementor decides
• std: 1

The dataproduct_type column contains a simple string value describing
the primary nature of the data product. Allowed values are: image, spec-
trum, timeseries, visibility, eventlist. Values are in lower case. Subtypes
(such as image.cube or spectrum.1D) may be specified in provider-specific
columns.

12

table_name column_name datatype units

ivoa.ObsCore dataproduct_type adql:VARCHAR
ivoa.ObsCore calib_level adql:INTEGER
ivoa.ObsCore obs_target adql:VARCHAR
ivoa.ObsCore obs_collection adql:VARCHAR
ivoa.ObsCore obs_id adql:VARCHAR
ivoa.ObsCore obs_publisher_did adql:CLOB
ivoa.ObsCore access_url adql:CLOB
ivoa.ObsCore s_ra adql:DOUBLE deg
ivoa.ObsCore s_dec adql:DOUBLE deg
ivoa.ObsCore s_fov adql:DOUBLE deg
ivoa.ObsCore s_region adql:REGION deg
ivoa.ObsCore s_resolution adql:DOUBLE deg
ivoa.ObsCore t_min adql:DOUBLE d
ivoa.ObsCore t_max adql:DOUBLE d
ivoa.ObsCore t_exptime adql:DOUBLE d
ivoa.ObsCore t_resolution adql:DOUBLE d
ivoa.ObsCore em_domain adql:VARCHAR
ivoa.ObsCore em_min adql:DOUBLE m
ivoa.ObsCore em_max adql:DOUBLE m
ivoa.ObsCore em_res_power adql:DOUBLE
ivoa.ObsCore o_fluxucd adql:VARCHAR

Table 2: TAP underscore SCHEMA.columns description of the ivoa.ObsCore
table

13

4.2 Calibration Level

• column_name: calib_level
• datatype: adql:INTEGER
• size: NULL
• utype: Observation.calibLevel
• UCD: ?
• principal: 1
• indexed: implementor decides
• std: 1

The calib_level column tells the user the amount of calibration pro-
cessing that has been applied to create the data product. Allowed values
are: 0 (instrumental/raw data in a non-standard format), 1 (raw data in a
standard format), 2 (calibrated data in standard format, instrument signa-
ture removed), and 3 (more highly processed data product). Data providers
decide which value best described their data products.

4.3 Target Name

• column_name: target
• datatype: adql:VARCHAR
• size: implementor decides
• utype: Observation.Target.name
• UCD: ?
• principal: 1
• indexed: implementor decides
• std: 1

The target column contains the name of the target of the observation.
This is typically the proper name of an astronomical object, but could be
the name of a survey field.

4.4 Collection Name

• column_name: obs_collection
• datatype: adql:VARCHAR
• size: implementor decides
• utype: Observation.DataID.collection
• UCD: ?
• principal: 1
• indexed: implementor decides

14

• std: 1

The obs_collection!column identifies the data collection to which the
data product belongs. A data collection can be any collection of datasets
which are alike in some fashion. Typical data collections might be all the
data from a particular telescope, instrument, or survey. The value is either
the registered shortname for the data collection, the full registered IVOA
identifier for the collection, or a data provider defined shortname for the
collection.

4.5 Observation Identifier

• column_name: obs_id
• datatype: adql:VARCHAR
• size: implementor decides
• utype: Observation.DataID.collectionID?
• UCD: ?
• principal: 1
• indexed: implementor decides
• std: 1

The obs_id column contains a collection-specific identifier for an obser-
vation. In the case where multiple data products are available for an obser-
vation (e.g. with different calibration levels), the obs_id!value will be the
same for each product of the observation.

4.6 Publisher Dataset Identier

• column_name: obs_publisher_did
• datatype: adql:CLOB
• size: implementor decides
• utype: Observation.DataID.PublisherDID
• UCD: ?
• principal: 1
• indexed: implementor decides
• std: 1

The obs_publisher_did column contains the IVOA dataset identifier
[ref] for the published data product. This value is globally unique since
different publishers (data centres) that provide access to a data product will
each assign their own value.

15

We specify the datatype as CLOB in the TAP service so that users will
know they can only use the obs_publisher_did column in the select clause
of a query. That is, users cannot specify this column as part of a condition
in the where clause and implementors are free to generate the URL during
output.

4.7 Access URL

• column_name: access_url
• datatype: adql:CLOB
• size: NULL
• utype: Observation.Access.reference
• UCD: ?
• principal: 1
• indexed: 0
• std: 1

The access_url column contains a URL that can be used to download
the data product (files).

We specify the datatype as CLOB in the TAP service so that users will
know they can only use the access_url column in the select clause of a
query. That is, users cannot specify this column as part of a condition in the
where clause and implementors are free to generate the URL during output.

4.8 Central Coordinates

• column_name: s_ra
• datatype: adql:DOUBLE
• size: NULL
• units: deg
• utype: Characterisation.SpatialAxis.Coverage.Location.coord.Position2D.Value2.C1
• UCD: ?
• principal: 1
• indexed: implementor decides
• std: 1

The s_ra column stores the ICRS Right Ascension of the centre of the
observation.

• column_name: s_dec
• datatype: adql:DOUBLE

16

• size: NULL
• units: deg
• utype: Characterisation.SpatialAxis.Coverage.Location.coord.Position2D.Value2.C2
• UCD: ?
• principal: 1
• indexed: implementor decides
• std: 1

The s_dec column stores the ICRS Declination of the centre of the ob-
servation.

4.9 Spatial Extent

• column_name: s_fov
• datatype: adql:DOUBLE
• size: NULL
• units: deg
• utype: Characterisation.SpatialAxis.Coverage.Extent?
• UCD: ?
• principal: 1
• indexed: implementor decides
• std: 1

The s_fov column contains the approximate size of the region covered by
the data product. For a circular region, this is the diameter (not the radius).

4.10 Spatial Coverage

• column_name: s_region
• datatype: adql:REGION
• size: NULL
• units: deg
• utype: Characterisation.SpatialAxis.Coverage.Support
• UCD: ?
• principal: 1
• indexed: implementor decides
• std: 1

We specify the datatype as the logical type REGION so that users can
specify spatial queries using a single column and in a limited number of
ways. If included in the select list of the query, the output is always an SCT-
S string as described in [TAP, section 6]. In the where clause, the s_region

17

column can be used with the ADQL geometry functions (INTERSECTS,
CONTAINS) to specify conditions; the service will generally have to trans-
late these into native SQL that enforces the same conditions or a suitable
approximation.

In addition, ADQL specifies several functions which may take the s_region
column as an argument: AREA, CENTROID, and COORDSYS. The AREA
function returns the area (in sq. deg.) of the observed the region. In cases
where the s_region itself is an approximation (a bounding box, for example),
this function should still return the actual value. This may be implemented
by computing and storing the area in a separate column and converting the
AREA(s_region) function call into a column reference in the query. The
CENTROID function returns an ADQL POINT value; if used in the select
list the output is always an STC-S string as described in [TAP, section 6].
The coordinates must be the same as those found in the s_ra and s_dec

columns, which are provided for convenience. The COORDSYS function re-
turns the coodrinate system used for the s_region; in the ObsCore model
this is restricted to ICRS, so this can be implemented by converting the
COORDSYS(s_region) function call to a constant in the query.

4.11 Spatial Resolution

• column_name: s_resolution
• datatype: adql:DOUBLE
• size: NULL
• units: degrees
• utype: Characterisation.SpatialAxis.Resolution.refVal.Cresolution
• UCD: ?
• principal: 1
• indexed: implementor decides
• std: 1

TODO: define here...

4.12 Time Bounds

• column_name: t_min
• datatype: adql:DOUBLE
• size: NULL
• units: d
• utype: Characterisation.TemporalAxis.Coverage.Bounds.limits.Interval.StartTime
• UCD: ?

18

• principal: 1
• indexed: implementor decides
• std: 1

The t_min column contains the start time of the observation in Modified
Julian Day(s).

• column_name: t_max
• datatype: adql:DOUBLE
• size: NULL
• units: d
• utype: Characterisation.TemporalAxis.Coverage.Bounds.limits.Interval.StopTime
• UCD: ?
• principal: 1
• indexed: implementor decides
• std: 1

The t_min column contains the stop time of the observation in Modified
Julian Day(s).

4.13 Exposure Time

• column_name: t_exptime
• datatype: adql:DOUBLE
• size: NULL
• units: d
• utype: Characterisation.TemporalAxis.Coverage.Support.Extent
• UCD: ?
• principal: 1
• indexed: implementor decides
• std: 1

TODO: define here...

4.14 Time Resolution

• column_name: t_resolution
• datatype: adql:DOUBLE
• size: NULL
• units: d
• utype: Characterisation.TemporalAxis.Resolution.refVal
• UCD: ?

19

• principal: 1
• indexed: implementor decides
• std: 1

TODO: define here...

4.15 Energy Domian

• column_name: em_domain
• datatype: adql:VARCHAR
• size: NULL
• units: NULL
• utype: Characterisation.waveband
• UCD: ?
• principal: 1
• indexed: implementor decides
• std: 1

The em_domain column contains one of seven (7) values that categorise
the entire electromagnetic spectrum into a simple set of regions. The names
and boundaries are defined in [ref to VO metadata std], but we list the names
here for convenience: Gamma-Ray, X-Ray, EUV, UV, Optical, Infrared, Mil-
limeter, Radio.

4.16 Energy Bounds

• column_name: em_min
• datatype: adql:DOUBLE
• size: NULL
• units: m
• utype: Characterisation.SpectralAxis.Coverage.Bounds.limits.Interval.LoLim
• UCD: ?
• principal: 1
• indexed: implementor decides
• std: 1

The em_min column contains the minimum energy observed, expressed as
(Barycentric? vacuum?) wavelength.

• column_name: em_max
• datatype: adql:DOUBLE
• size: NULL

20

• units: m
• utype: Characterisation.SpectralAxis.Coverage.Bounds.limits.Interval.HiLim
• UCD: ?
• principal: 1
• indexed: implementor decides
• std: 1

The em_max column contains the maximum energy observed, expressed
as (Barycentric? vacuum?) wavelength.

4.17 Spectral Resolution

• column_name: em_res_power
• datatype: adql:DOUBLE
• size: NULL
• units: NULL
• utype: Characterisation.SpectralAxis.Resolution.ResPower.refVal
• UCD: ?
• principal: 1
• indexed: implementor decides
• std: 1

The em_res_power column contains the typical or characteristic resolving
power of the energy axis.

4.18 Observable Axis Description

• column_name: o_fluxucd
• datatype: adql:VARCHAR
• size: implementor decides
• units: NULL
• utype: Characterisation.ObservableAxis.ucd
• UCD: ?
• principal: 1
• indexed: implementor decides
• std: 1

The o_fluxucd column contains a UCD [ref] describing the values of
the observable within the data product. The observable is the measured
quantity, for example the pixel value in an image. TODO: List of allowed
values? recommendations?

21

4.19 Additional Columns

Service providers may include additional columns in the ivoa.ObsCore ta-
ble to expose additional metadata. These columns must be described in the
TAP_SCHEMA.columns table and in the output from the VOSI-tables resource.
Users may access these columns by examining the column metadata for in-
dividual services and then using them explicitly in queries or by selecting
all columns in the query (e.g. ”select * from ivoa.ObsCore ...” in an ADQL
query).

22

5 OLD SECTION - text needs to be merged
into above structure - Data Model detailed
description

Here we try to describe the data model attributes and classes and mention
the corresponding “short name” that would be used in the OBS/TAP imple-
mentation of this model.

23

Appendix A: Data discovery Use-cases

Use-cases to be included here see original document.

Appendix B: Example of ADQL queries for some
of our use cases.

Here we consider a very general use case from the list (1.1) :
Show me a list of all data that satisfies:

1.1.1 Datatype=any
1.1.2 contains RA=16.0 and DEC=40.0

These data would be searched on all VO services by sending the following
query:

SELECT * FROM ivoa.Obscore WHERE

s_ra_min < 16.0 AND s_ra_max > 16.0 AND

s_dec_min < 40.0 AND s_dec_max > 40.0

More constraints can be added in the following use-case (1.3):
Show me a list of all data that satisfies

1.3.1 DataType=Image
1.3.2 Spatial resolution better than 0.3 arcseconds
1.3.3 Filter = J or H or K
1.3.4 RA between 16 hours and 17 hours
1.3.5 DEC between 10 degrees and 11 degrees

SELECT * FROM ivoa.Obscore_ext WHERE

dataproduct_type=‘‘Image.2D’’

AND s_resolution < 0.3

AND s_ra > 240 AND s_ra < 255 AND

s_dec > 10 AND s_dec < 11

AND

(em_min > 2.1 AND em_max < 2.4) OR

(em_min >= 1.6 AND em_max <= 1.8) OR

(em_min >= 1.2 AND em_max <= 1.4)

24

Appendix C: Sample SQL to Insert Table Meta-
data

All TAP services that implement the ObsCore model will have the same ta-
ble and column descriptions in their TAP_SCHEMA, with the exception of the
service-specific column descrptions as described in ??. Specifically, imple-
mentations may change the description, the indexed flag, and the size (in the
case of variable width columns).

TODO: include standard and usable SQL insert statements here...

25

Figure 1: Here is the class diagram representing the classes used to organise
observational metadata. Classes may be linked together via an association or
aggregation link. The minimal set of necessary attributes for data discovery
is shown in brown.

26

