
TAP and the Data Models
ADASS XXXI

28/09/2021

Laurent Michel - François Bonnarel - Mireille Louys - Dave Morris

I’m a star cluster

I’m an astronomer

I’m a star cluster

I’m an astronomer

Night after night, I
study this cluster

I acquired many spectra
during these observations

I want’ to publish this
data in the VO

I’m a star cluster

I have observed each of
its stars many times

How to proceed?

Cool

OK

To publish sources
you can use a
Simple Cone Search

Table Access Protocol Of course
Don’t worry we have very good
experts with nice tooling
(DACHS, VOLLT, openCADC..)

And what about having all my
stuff in one single service.

To publish spectra you
can use a Simple
Spectral Access Protocol

TAP Basics
● Make rational DBs interoperable

○ TAP does not care of the way data is stored:
■ Put it in relational tables and that’s it

○ TAP just makes it discoverable and searchable
■ Interoperable in others words

● Built on 3 pillars
○ Access: UWS

■ UWS: REST API, sync or async
○ Query language: ADQL

■ ADQL : derived from an SQL subset with some astro-specific functions
○ Query result format: VOTable

■ at least

Schemas DB desc
- Name

Tables DB desc
- Name
- Location

Columns DB desc
- Name
- Location
- type

Joins DB desc
- Source
- target
- keys

sources

detection

spectra

TA
P

_S
C

H
E

M
A

D
at

a
Ta

bl
es

SELECT * FROM sources WHERE sources.magV > 19

Interoperability Keys:
● The TAP_SCHEMA provides a standard description of the database content
● Client can explore the TAP_SCHEMA with standard ADQL queries to discover the DB content

and the way to retrieve data

<TD/>

<TD/>

FIELD

<TD/>

<TD/>

FIELD

Interoperability Keys:
Having standard metadata allows clients to properly understand retrieved data without consideration
on their origin (up to a certain extend)

- Helps for generic client code
- Facilitate dataset comparisons

Schemas DB desc
- Name

Tables DB desc
- Name
- Location

Columns DB desc
- Name
- Location
- type

Joins DB desc
- Source
- target
- keys

sources

detection

spectra

TA
P

_S
C

H
E

M
A

D
at

a
Ta

bl
es

SELECT * FROM sources WHERE sources.magV > 19 <TD/>

<TD/>

FIELD

<TD/>

<TD/>

FIELD

VO Meta-data
- Description
- UType

VO Meta-data
- Description
- UType

VO Meta-data
- UCD / UType
- XType
- Unit

VO Meta-data
- Description
- UType

metadata metadata

Can I arrange my data in a
way that I got sources,
detections and spectra in one
VOTable?

Sure, document your joins

TAP Level 2
Sources

Detections

SpectraD
at

a
Ta

bl
es

● The TAP_SCHEMA can suggest and document scientifically relevant table joins

Schemas DB desc
- Name

Tables DB desc
- Name
- Location

Columns DB desc
- Name
- Location
- type

Joins DB desc
- Source
- target
- keys

TA
P

_S
C

H
E

M
A

VO Meta-data
- Description
- UType

VO Meta-data
- Description
- UType

VO Meta-data
- Description
- UCD / UType
- XType

VO Meta-data
- Description
- UType

Oh my goodness!

FIELDS
Sources
metadata

FIELDS
Detect.
metadata

Source1 Detection11 Spectrum111

Source1 Detection11 Spectrum112

Source1 Detection12 Spectrum121

Source2 Detection21 Spectrum211

Source2 Detection22 Spectrum221

Source2 Detection22 Spectrum222

FIELDS
Spectra
metadata

Everything is there for sure, but ...

And you will
get this

Just run this query

What will I get
with that query?

SELECT sources.* detections.* spectra.*
FROM sources
JOIN detections ON sources.id = detections.id
JOIN spectra ON sources.id = spectra.id
WHERE sources.magV > 19
AND detection.date > ‘2021-10-04’
AND spectra.bkg < 10e-3

How to Deal with Connected Data
● TAP almost support models...

○ Standard meta-data
○ 1-N relationship (table joins)

■ can be served by a Datalink service

● … But not completely
○ See after

● … Or not easily
○ Queries difficult to set-up
○ Output difficult to process

■ This can be worked around at client level
■ Tap-complex: a JavaScript Join-Walker

I would like to enhance my data
description
- Errors represented by

covariance matrices
- I would like to describe the

filters I’m using
- I would like to add

information about the
observations

Can I use it in the TAP context?

The VO has models for this

Yes… and no

TAP Level 2

Sources

Detections

SpectraD
at

a
Ta

bl
es

● The TAP_SCHEMA cannot support some model related meta-data

Schemas DB desc
- Name

Tables DB desc
- Name
- Location

Columns DB desc
- Name
- Location
- type

Joins DB desc
- Source
- target
- keys

TA
P

_S
C

H
E

M
A

VO Meta-data
- Description
- UType

VO Meta-data
- Description
- UType

VO Meta-data
- Description
- UCD / UType
- XType

VO Meta-data
- Description
- UType

Modeles meta-data
- Complex errors
- Column grouping
- Filters
- Frames
- Autorship
- …..

This information does not come along with the data,
It results from a curation work (e.g. paper reading)

Data Annotation
U

SE
R

Query Engine

<TR/>

<TR/>

FIELD

metadata

<TR/>

<TR/>

FIELD

metadata

<TR/>

<TR/>

FIELD

metadata

<TR/>

<TR/>

FIELD

metadata

Model Annotations

Models meta-data
- Complex errors
- Column grouping
- Filters
- Frames
- Authorship
- …..

Data
ADQL (*) Query

(*) Must be able to notify the server whether searched data has be annotated or not

Data annotation requires a
specific processing by the server

N
at

iv
e

D
at

a
Ta

bl
e

M
od

el
 M

ap
pi

ng
 B

lo
ck

Model Leaf to Data Field Binding

M
od

e
cl

as
s

H
ie

ra
rc

hy

Data Annotation

● Three Questions

○ CURATION: How to give the service the items it needs to annotate data
■ Curation issues are out the scope of any standards (hand-made work so far)

○ QUERY PROCESSING: How to enable a service to annotate data
■ Mireille: model annotation on the fly based on VODML mapping
■ Judith: model annotation based on <GROUPS>

○ USER REQUEST: How to tell a service to annotate searched data
■ Part #1 of Laurent’s talk (on behalf of Dave) talk coming now

I’m Miss Provenance

I can describe where
your data come from
and how it has been
taken and processed

… and later to
retrieve it

I would like to
publish this in your
TAP service..

How to deal with mapped data
● A case very close to an object relational mapping (ORM) pattern:

○ We start from an existing model e.g. Provenance Data Model
○ We have data matching this model

● Three Questions

○ SERVICE SETUP: How to enable a TAP service to store model instances
■ ORM rules
■ TAP_SCHEMA setup

○ DATA INGESTION: How to import model instances in that service
○ François’s talk coming now
○ DATA RETRIEVAL: How to retrieve model instances from that service

■ Part #2 of Laurent’s talk (on behalf of Dave) talk coming now

Tabular Data
. e.g. a source catalogue

Simple table Simple VOTable

Associated Data
- Detections
- Spectra

Multiple tables + links as col

Multiple tables + DataLink

Simple VOTable
+ link endpoints

Data Arrangement
- Grouping
- Error def.
- Coord frames
- Semantic

Simple table + meta-data
Simple VOTable
+ annotations

Associated Data
- Link semantic Multiple tables + metadata

Multi-tables
VOTable
+ annotations

Input Data Data Storage Query Output

Simple VOTable
+ smart client

TAP has (almost) anything to host models instances

Common Data Representation

1. Quantities definition
2. Quantity roles definition
3. The way quantities are nested
4. The way quantities relate each to other

Schemas DB desc
- Name

Tables DB desc
- Name
- Location

Columns DB desc
- Name
- Location
- type

Joins DB desc
- Source
- target
- keys

TA
P

_S
C

H
E

M
A

VO Meta-data
- Description
- UType

VO Meta-data
- Description
- UType

VO Meta-data
- Description
- UCD / UType
- XType

VO Meta-data
- Description
- UType

VO Model

Adding VO Meta-data
● TAP_SCHEMA Meta-data

○ Description: Textual description
○ UCD: Standard VO vocabulary telling the quantities stored in the columns
○ UType:

■ Columns: Bind data columns with data model leaves
■ Table: Data-model mapped on the table

○ XType: Tells how to interpret data columns (e.g. string as STC polygon)
○ Unit: Unit in VO standard format

Interoperability Key:
Having standard metadata allows clients to properly understand retrieved data without
consideration on their origin (up to a certain extend)

- Helps for generic client code
- Facilitate dataset comparisons

Modeled meta-data => VO Model

Model annot.

Dataset

Model annot.

Dataset

Model annot.

Dataset Processing output

Model aware code
- Ignore the dataset origin
- The parser only refers to

model elements

Modeling data <> Making Data models
Building data descriptions that can be shared by different
stakeholders and that are independent from any particular
data provider

Common Data Representation

1. Quantities definition
2. Quantity roles definition
3. The way quantities are nested
4. The way quantities relate each to other

24

Model Mapping
Ta

bl
e

1 <PARAMS>

<FIELDS>

Ta
bl

e
2 <PARAMS>

<FIELDS>

Same Model Mapping

Ta
bl

e
1 <PARAMS>

<FIELDS>

Ta
bl

e
2 <PARAMS>

<FIELDS>

Ta
bl

e
3 <PARAMS>

<FIELDS>

● A model-aware client access data through the mapping block.
● The same code can understand and process annotated a VOTable

whatever either its origin or the way data are arranged
R

eg
ul

ar
 c

lie
nt

 c
an

 ju
st

sk

ip
 th

e
m

ap
pi

ng
 b

lo
ck

R
eg

ul
ar

 c
lie

nt
 c

an
 ju

st

sk
ip

 th
e

m
ap

pi
ng

 b
lo

ck

● A model-aware client access data through the mapping block.
● The same code can understand and process an annotated VOTable

whatever either its origin or the way data are arranged

TAP and the models
● What TAP can do

○ Bind tables with models (UTypes)
○ Bind columns with model leaves (UTypes)
○ Report this information in VOTables in a shareable way.

● What TAP cannot do yet
○ Store extra flat meta-data (e.g. frames, authorship…)

■ It is still possible to create specific tables for this though.
○ Store the way legacy data must be map yo a model

■ when this mapping involves more than one column
■ when this mapping involves more than one table

○ Build VOTables able to map data on a model
■ Using multiple tables
■ Set model annotations inside the VOTable

○ Tell the query engine to return such VOTables

